Effect of temperature change on the behavior of space structures
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Attention to the effect of temperature change on the behavior of space steel structures has been
paid. A method for converting the temperature effects into equivalent fictious joint loads has been
presented. A geometrical nonlinear analysis including the effects of axial forces and bowing of
space structure members, is used for the analysis and study of the stability of space structures.
An algorithm based on the current stiffness parameter is used to predict the buckling behavior of
space structures. For this purpose, the tangent stiffness matrix has been used in the analysis,
which is carried out by the displacement method through an iterative\ incremental procedure
based on Newton-Raphson technique. The iterations that take into account the latest geometry are
repeated until the unbalanced loads become negligible and equilibrium is obtained. The
equilibrium equations are solved by Cholesky’s method. Results of illustrative examples and

conclusions based on these results are also given.
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1. Introduction

Structures are quite frequently subjected
to variations of temperature whose effects are
significant that they must be taken into
account in the analysis. Such variations may
simply be seasonal or may arise as a result of
some industrial process such as factories,
cooling and freezing building, and air-
conditioned building. It is still limited to
include the effect of temperature change in
the nonlinear analysis and stability of space
structures. Temperature changes tend to
lead, of course, to changes in the lengths of
structure members, if such changes in
lengths are completely or partially prevented
by conditions at supports or by other parts of
the structure then stresses will be set up in
some or all of the members. So
recommendations have been made for the
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inclusion of the effects of temperature in the
nonlinear analysis of space structures.

The present investigation presents a
nonlinear analysis of three-dimensional skeletal
steel structures considering the effects of
temperature changes. The analysis includes
the effects of axial forces and bowing of space
frame members, by using stability functions
and bowing functions and by using the tangent
stiffness matrix of space frame members
derived on the basis of deformed geometry of
the members. A  geometrical nonlinear
incremental/iterative technique 1s used for the
analysis and study of the stability of space
structures. An algorithm based on the current
stiffness parameter S, is implemented in the
study to predict the buckling behavior of space
structures. The current stiffness parameter has
also been used for the automation of the load
incrementation procedure and for detecting and
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parameter has also been used for the
automation of the load incrementation
procedure and for detecting and determining
the existence and the type of such
instabilities as might arise during load
application.

Temperature effects are converted into
equivalent joint loads and are treated as a
temperature loading condition. The
deformations due to temperature are
superposed on the deformations caused by
live load.

Y, Y

= ‘7,/ '
77Ty
Positive directions

Fig. 1. Member axes in undeformed geometry and sign
convention for forces and displacements.

2. Sign convention

The joint translations and forces acting
on the member are positive along the
positive directions of the coordinate axes,
while the positive directions of the joint
rotations and moments are determined in
accordance with the right hand screw rule
fig. 1. For convenience, both the translations
and rotations will be referred to as
deformations and . similarly. direct forces
and moments will be termed joint loads.

3. Coordinate axes systems

The forces and deformations at the ends
of a structural element are usually referred
to as individual set of right handed axes.
When the relative end deformations and the
independent end forces are considered,
these axes will be referred to as the member
or local current axes (x°. y° and z¢) The
equilibrium check equations (i.e the
nonlinear relations between the relative end
deformations and the independent

components of the end forces) have been
derived throughout this research with respect
to these local current axes. A further set of
local axes has also been used, and this will be
referred to as the member or local updated
axes X,y and z, fig. 2.

In such member local updated axes. the
relations between all element end
forces(including the dependent component)
and end deformations are derived with respect
to the element updated axes allowing for the
latest known geometry of the structure. In both
the x°,y° .z and the x.v.z systems. the member
centroidal axis is taken as the x axis. while the
major and minor principal bending axes y and
z are a moving coordinate system. Also the
principal directions of bending (the direction of
the y and z axes) will vary for deformed
members from one cross section to another.
The y and z axes defined herein therefore. refer
to an average cross-section.

¥ global axes o x°
M, M
X c 2z AN o
(<] g
+F =& 4 QL
z \ =i i
QL i (c ) local current axes
M, = t:l 12
M X
1z ~ Mzz sz/

V-
2\2;;

i X\ g’ (b ) local updated axes
o
X 2
\ ~: - (a)local mtal axes
1
Fig. 2. Svstems of coordinate axes.

On the other hand. in order to write the
equilibrium equations of the complete system.
all the joint deformations and loads for the
structure are expressed in a single fixed global
coordinate system X. Y and Z. These will be
referred to as structure or global axes.
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4, Stiffness matrices of standered
members

The equilibrium check equations which
include the effects of axial force and bowing
can be written in the form

Me1=Elz(c18¢12+c20°2;) /L,
Meo=Elz(c2:012+¢120°22) / L,

Y \:EI\'(C 1 \'(')Clv\""C'_)\'e‘j_?\‘) / L, ( 1)
M‘.l\':'EI)'(CZ\HCl_\‘*’C X\'e"‘;*\') / L,
M: =GJ(,'){/L,

Q =EA(u-dbv-0rz)/L,

where  Ciz,C22,C1v,C are the stability
functions and dnv,dn. are the axial shortening
due to bowing about axes y©,z¢

The level of the axial force Q can be
related to Euler load through a non-
dimensional axialforce parameter q thus

q = Q/PEulr:r
= (EA/L)(u-8vy-8v2) / (n?E1/ L) 2
=(S;/n2)(#-cb\--Cbz),

where:
S is the slenderness ratio
=L/(I/A)1/2
u is the total axial strain u/L
U= Ux1-Ux2
che,Chz are the axial strain due to bowing
about the principal axes
I is the reference moment of inertia
Ot = 0%1-0%
The expression for the axial force Q in Eq.(1)
can be written in terms of the non-
dimensional axial force parameter

QL=(EI/L)(qn?). (3)

The equilibrium check equation derived
above for a space frame member, will be
used to establish the member tangent
stiffness matrix in the global axes (X,Y,2)
(K:). To achieve this , the member tangent
stiffness matrix will be first established for
relative deformations in the member local
current axes x°y° and z°. The second step
will be the transformation of this tangent
stiffness matrix [t] into its local updated axes
x.y and z to obtain [T].The third step will be

the transformation of [T] To the structure
global axes to obtainfk].The development
presented in this section generally follows that
of Oran(1).

4.1. The tangent stiffness matrix in the member
local axes(x,y¢,z¢)

The expressions in Eq.(1) can be written in
the form

{S}= i), (4)

where {S} is the vector of the nodal forces, (u)
are the nodal deformations. and fare a set of
nonlinear functions in u which include the
effects of axial force, and bowing.

For any given displacement u, Eq.(4) can be
differentiated to give

AS=[t){Au}, ()
where

IAS)T={AM¢12,AM" 2z, AM® ,AM®2¢,AM,AQL},
{AU.}T={A9C 12,A0%22.A0°¢ | v, A8, ,AG)(,A#}, (6)

and[t] is the tangent stiffness matrix for
relative displacements .The element t; of [t] is

tj=CSi+¢8S;.¢qfori,j=1,2,3.4.5,6 (7)
cui ¢q cuj .

Taking into consideration the following Oran
[9] relations

q _Gm €9 _,84_1 @
m wmH o, @ H’
where:

Gin=c/1n01n+c/2nb%2n,

Gan=c/2n0°1n+c/ 10620,

H =(n/s)2+Zn=y.z[b/1n(0¢1n+H2n)2 +
b/2n(0°1n+6°2n)2,

in which the subscript m refers to the member
ends lor 2, the subscript n refers to the axes
y°,.x° and the prime superscript indicates one
differentiation with respect to q» Using
expressions in Egs. (1).(2),(3) and performing
the differentiation in Eq.(7) lead to the member
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tangent stiffness matrix[t] in the local
current axes(x<,y<,z°) .

[t]=E1/Lx[tij], (9)
where:

t1.1=Cc12+G212/ (n2H),
tl.2=;zC2z+(G1zG2z)/(n2H),
t1.3=0,

t1.4=0,

t1.5=0,

t1.6=G2z/H,
t2.1=C2C22+(G12G22) / n2H,
t2.2=;zC1z+G22z/(7t2H),
t2.3=0,

t2.4=0,

t2.5=0,

t2.6=G2z/H,

t3.1=0,

t3,2=0,
ta.a=Cre1v+Gi2/(n2H),
t3.4=CvCov+G1vGayv/ (m2H),
t3.5=0,

t3.6=Gl_\'/H,

t4.1=0,

t4.2=0,
t4.3=;\'C2_\'+G1_\'G2)’/(7[2H),
ta.4=Cvc1y+Go2/(n2H),
t4.5=0,

t4.6=G2_\'/H,

t5.1=0,

t5.2=0,

ts.3=0,

t5.4=0,

ts.5=nt,

t6.1=Glz/H,

t6.2=G22/H,

t6,3=G]}'/H,

ts.4=G2v/H,

t6.5=0,

te.s=m2/H,

where n=GJ/El, :=I;/1, =1./1,

4.2. The tangent stiffness matrix in the
member local updated axes(x,y,z)

If {F}denotes a 12x1 vector representing
member end forces referred to the member
local updated axes (x,y,z) these forces can be
related to the member end forces in the local

current axes (x%,y%,z°) by the equilibrium
equations to give

{Fi=[B'I{S}, (10)

in which [B] is the local static or equilibrium
matrix '

[B]=
" o 0 0 0 0 1/0)
/L 1/L 0 0 0 0
0 ol | SLIpAEE | | O 0
0 0 0 0 A 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 -1/L
-1/L 0 <140 DR 0 0 0
0 o || MEEE @ d 0
(6] 0 0 0 1 0
0 0 0 1 0 0
\. 0 1 0 0 0 0J
and

{F}T ={le,F1_\',Flz,Mlx,M1_\‘,Mlz,F2x,
Fay,Faz,Max,M2v,M22}, (11)

(TI=[B][tBY]". (12)

where [T] is the 12x12 element local stiffness
matrix which relates the end forces to the
corresponding end deformations in the
directions of the member local coordinates

(x,y,2)

4.3.The overall stiffness matrix in the structure
global axes(X,Y,Z)

To construct the overall structure tangent
stiffness matrix ,the individual element
tangent stiffness matrices should be
transferred  from their local updated
coordinates (X,y,z) to the structure global
coordinates (X,Y,Z). Let [R] be a 12x12
orthogonal matrix defined by

[nle 0 0

[R]= 0.0 i ]iEe 0 (13)
0 0 [r2] O
0, .0 0 |[r2]

in which|ri],[rz] are the end section
orientation matrices defined by the member
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yrientation matrix [r] and the orientation
matrices of joints 1 and 2 [ou].[az],
respectively.

Note that [r] depends on the direction
-osines of the member local updated axes
x.v.z) with respect to the structure global
axesiX.Y.Z) and [ui],02] depend on the
‘ndividual rotations of each end of the
member.

I[f [ki is the member tangent stiffness
matrix in the structure global axes

[l J=[R][T][R]" (14)
=[R][BH[B][R]" (15)
=[BI[t[B]" (16)

in which [B] is the instantaneous global

equilibrium matrix
[B]=[R][B] (17)
The overall stiffness matrix is

(KA=Z[B][t][B]" (18)

5. Nonlinear analysis and stability
5.1. Method of solution

The method of solution is based on the
principles of potential energy or virtual
work. A balance equation between the
applied external forces | P} and the
integrated internal forces{P"!} is sought in
the displaced state

Pi=tp™. (19)
Often the applied forces{P}, which at

equilibrium are equal to internal forces
{py.are expressed by

Pi= PRI, (20)
where [Ks] is often denoted either as “ The

secant stiffness matrix” or the” equilibrium
check” equations

The next level of equations can be obtained
by using the differential form of the
equilibrium check equations

{Pi=[Kil{v/}, (21)

where dash denotes differentiation with
respect to a loading parameter ;. -. Eq.(21) can
be also be written in incremental form as

(AP=[KiJ{Av). (22)

By substituting for [Ki] the tangent stiffness
matrix {Kr]. Eq. (22) at station i in the iteration
sequence can be written in the form

S0P+ 1=[Kr]i{Av}ici. (23)
5.2. Incremental and iterative schemes

Consider load level (P, and assume that
the corresponding deformation configuration of
the system {vi} is known. It is now desired to
determine the configuration Vie)
corresponding to load level {Pi-1} where

{Pi+1 }={Pi {+{APi+:}. (24)

In the following discussion, subscript ” j” is
used to refer to the j iteration cycle within
load increment i . The out of balance force for
iteration j is

{Pi jo°}={Pi+1}-{ Pijnt}, (25)

in which {Pi-}is the level of the external applied
load , and {Pi"represents the internal joint
forces corresponding to the configuration {vi ).
The out of balance joint forces are then treated
as a load increment and the displacement
correction vector {Av,;} is obtained from the
incremental relationship

[Kr,J{Avije1}={Pijby, (26)

and a new approximate configuration can be
obtained from the equation

Vi1 )=4vi AV 1. (27)
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The process continues until the prescribed
tolerance of the convergence criteria is
achieved.

5.3. Updating the deformation

The current node positions can be found
by adding the transitional components of the
current displacement vector {vi+i} to the co-
ordinates of the joints at the previous load
level

Vit J={Vil+H{Avia} (28)

To update the nodal orientation and the
shape of members the rotational
components of the displacement vector
should be updated.

For small incremental rotation
components an approximate value for the
current rotations can be obtained as before
using Eq.(28). However, for large values of
the incremental rotational components the
method presented by Oran is used in this

paper.
5.4.Computation of member relative
deformation and orientation

The orientation of the member updated
axes (x,y,z) with respect to the global
structure axes (X,Y,Z) is best described by
the orthogonal direction cosine matrix{r}

cosXx cosXy cosXz
[r]= jcosYx cosYy cosYz,
cosZx cosZy cosZz

LxLy siny- Lchos"

er -LxLycosy-LLzsiny
G L(L2x+L2;)1/2

L(L2x+L2,)1/2

Ly (L2x+L2;)1/2cosy -(L2x+L2;)1/2siny
L L L

Lz -LyLzcosy+LLxsiny
L L{L2x+L2)1/2
\

LyLzsiny-LLxcosy
L(L2x+L2;)1/2

where

Lx=X>-X , Lv=Y2-Y,, L=Z>-Z,

L = JLi (SR | (29)

and y is the orientation angle between the Xy
and Xoyo planes where y. is a special vertical
axes parallel to the global Y axes, and x,
coincides with the member current x axes at
the initial un-deformed state of the member

It is worth noting that the derivation of the
rotation matrix in Eq.(29) for the initial
position of a member, involves three rotation
matrix [ro’],[r."land [r.] and the multiplication
of these three matrices results in the final
initial member rotation matrixr,

[ro]=[ro][xo"][xo"). (30)

For small relative twisting of the ends |, the
average twist yi"¢ at deformed position i may be
related to the orientation angle v, at the initial
un-deformed position by

yiavex ~‘/+(91x+e‘2x)/2y 3 l)
in which

01x~(Lx/L)01x+(Ly/L)O1v+(Lz/ L)B12
62x~(Lx/ L)B2x+(Lv /L)O2y+(L./ L)02z (32)

For a deformed member , let X,,Y,,Z1and
X2,Y2Z2 be its joint co-ordinates and [ot1],[ez)
the associated joint orientation matrices of its
two joints. Due to the fact that the two end
sections of the member will not be exactly
paralleled to each other, let [p1].[p2]be "the end
section orientation matrices’ where these
matrices represent the combined effect of both
the joint orientation matrix and the member
orientation matrix. It then follows that

[P1]=[ou][r],
[P2]=[oee]ro] . (33)

where[r;] is the member orientation matrix in
the initial un-deformed configuration.

To define the current member orientation
matrix,[r],the first column of the matrix
{ri,r21,131)7.  as well as the relative axial
displacements y , can be obtained from the
member end coordinates X1,y1,21)T  and
x2,y2,22fT .Also due to the small relative
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deformation assumption adopted in normal
beam column theory, the relative end
rotation angles in the member current axes
16°1:.8%12,0%¢,6%,}Tcan be obtained as scalar
products of the first columniri!l} of the
current member orientation matrix with
appropriate column of [p:],[pz2],thus

[pr]Tirtii={1 -6¢1,
[pz]Firt }={1-6°2

Bc1+jT  to get 61z, B¢y,
64?2}.}T to get ec2z,ec2}',

similarly
o -{p1 2R T{p2l3=ip1 BT {22}, (34)
where o is the relative twist between the

ends. The subscripts (1), (2) and (3) indicates
the column number of the matrices used.

To determine the second and third
columns of [r] .let[ei],Jez] be the joint
orientation matrices in the local current
axes after rotating the end sections about
their principal directions y*©.z¢ but not about
their normal axis X, in such a way as to
make these sections perpendicular to the
member x-axis(i.e.»:=0.0) thus

1 0¢c12 -6¢1¢
e -6d 1 0 and
6‘:2)‘ O 1
=
1 0, -0¢ T
(ez]= -0%2x 1 0
o Lo sy (35)

In this situation, the new end section
orientation matrices will be given by

[r1)x [p]fe:), and
[r2)~{pallez] (36)

For small relative rotation o the member
orientation matrix [r] of an average cross
section will be taken as the average of the
end section orientation matrices [ri],[rz],
thus

[rl= Y2 [ 1]+ [r2] ] (37)

5.5. Current stiffness parameter Se

To formulate the value of S, , consider a
structure in a converged equilibrium state
under a certain level of load {P..:} and consider
an increment of load {APjand the
corresponding increment in the displacement
vector of {Avi].For proportional loading the load
{pi} at level i can be expressed in terms of a
reference load{prs through a scalar load
parameter 7.L, thus ref. [2.5].

{pi- 1= 7L 1{Pres}. (38)

The subsequent load increment at stage i can

also be expressed by this scalar load
parameter,
{AP=7.Li{Pres). (39)

So the current stiffness parameter of the
structure can then be expressed as

di L _AALL D _1__ (40)
dv Av v/

1 H

where v/i is then the differential of vi with
respect to 7, .Expression (40) for the current
stiffness is a vector. It can be transformed into
a scalar through multiplication by the
reference load vector({P.!.

The scalar current stiffness = il
(/TP
= An-
{viT{Pro. (41)

The initial stiffness . which is the stiffness
corresponding to the first load increment
APican be expressed in a similar fashion as

The initial stiffness = (d/.t/dv): = 1/{v/,}
=1 Az, /Av)} (42)

The subscript 1 in Eq. (42) indicates the first
load increment starting from the initial state.
The scalar current stiffness for increment i
can now be related to the initial scalar stiffness
at increment 1 ie. Eq. (42) modified in the
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same way as the current stiffness in Eq.(43)
to give

Sp=The scalar current stiffness,
The scalar initial stiffness

= Az ,‘L_ / A}- 1 L
{AVi}T{Pre(} AV }T{Prd} ’ (43)

= AMYAVIT(Prer)
Ak L{AVi}T{Pref}.

Sp is defined as “the current stiffness
parameter” when {Avi} is calculated using the
current tangent stiffness matrix

IAP}=[Kr]i{Avi). (44)
By substituting the value of ({Prefj from

Eq.(38) in Eq. (42) an alternative expression
~Jor Sp can be obtained as

Sp= (A%.1)2 {AV1)T {AP:}
(7142 {AVIIT (AP (45)

Which with the values of {AP:} and {APi} from
Egn.(44 ) gives

Sp=(A%it/ A7112(D1/Dy), (46)

where Diand Djs are scalar values given by
Di={AviJT[Kr]:{Avaj,
Di ={Avi}T[Kr]i{Avi},
where [Kr]i,[Kr]i are the tangent stiffness
matrices at the initial and current states of
equilibrium.

6. Equivalent temperature end forces

Figure 3 shows a member of length L
subjected to a temperature rise AT which is
uniform throughout its volume. If the bar is
free to expand its length will increase by

e=a.AT.’L

If the expansion is prevented completely a

F=AEe/L
F= o.E.A.AT. (47)

Y

A%

T €

x
(e= TL for temprature riset )

4 N

A N
Eariof T

A N

F =AE p/L

Fig. 3. The fixed end forces due to temperature change.

In the above equation, only the simplest
kind of temperature change effect has been
considered which is the change of length of
the element. This leads to fixed-end forces
acting in the axial direction. Other situations
may result in different types of fixed-end-
forces. Some of these situations which will lead
to the occurrence of fixed-end- moments will
now be considered.

In problems of temperature changes itis
quite common for one or more elements of a
structure to be subjected to a thermal gradient
rather than to a uniform temperature change.
Such a situation is shown in Fig. 4.The
manner of variation of the temperature
through the depth and width is linear.

There will in general be changing in length
of the centroidal axes plus rotations. The latter
takes place as a result of the difference in
thermal strain through the beam depth and
width. The changing in length behavior will be
prevented by fixed-end axial forces of the type
described before, which have magnitude
o.A.E.AT. It should be noted that AT is the
temperature change at the centroid.

compressive axial force will be set up in the AT=AT.+ATz+ S TR (48)
member .This force has a magnitude of
404 Alexandria Engineering Journal Vol. 39, No. 3, May 2000
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The bending behavior is the same at all
points along the beam and therefore the
beam will bend in a circular arc. The strain
at the top or the bottom edge is algebraically
added to the centriodal strain, using the
simple bending formula.

. 6.8

AS AN

L

X
(e TL for temprature riset )

s

~F

AN

rrr

Foag /1

Fig.4. The fixed end- moments due to temperature
Change.

The fixed-end moment which would be
required to prevent the bending deformation
has the magnitude

M=ELo(AT:-AT2)/d, (49)
M. =ElLo(ATs-AT4)/b, (50)

where d.b are the depth and the width of the
cr cross-section of the member respectively.

7. Numerical examples

Example 1
The space frame shown in figure 5 has

been analyzed under uniform temperature
change. All members have the same cross-
section with following properties:

A=1385.44 mm? 1,=1,=695838.43 mm*
J=1391676.85 mm* E=210KN/mm?
G=81KN/mm? a=11x10%

The frame is carrying a vertical
concentrated live load at joint 1.
Figure 6 shows the load-deformation
relationship of joint 1 for the following three
cases.

Case A Live load only.
Case B Live load + uniform temperature

rise=40°C.
Case C Live load + uniform temperature
drop=-40°C.
N
9
&
L 3 X
Z
)
P
Im
M. e ~/ \,
T X
Sm T

Fig.5. Model geometryv and node numbers of space frame

1286

VERTICAL LOAD OF JOINT ( 1) IN KN

-10 -5 0 5 10 15 20
VERTICAL DEFLECTION OF JOINT (1) IN MM

Fig .6. The effect of remperarure change on the load-
deformation relationship.

It is clear from the figure that except some
deformation there is no other effects on the
load-deformation relationship. The maximum
loads in three cases are approximately the
same. This means that it is possible for such
type of structures to be subjected to
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temperature change and yet remain
unstressed.

Figure 7 shows the effect of uniform
temperature change on  the vertical
displacement of joint 1, normal force in
member (7-13) and M: of member (7-13) at
end (7).The frame is loaded by 200KN live
load on joint 1.

It is clear from the figure that the
uniform temperature change has no effect
on the normal force. On the other hand, the
decrease of the uniform temperature change
bellow zero degree resulted in a remarkable
increase of the vertical deflection of node 1
and the bending moment of member (7-13),
and vice versa.

TEMP. CHANGE IN DEGREE

NORMALIZED DEFLECTION, NORMAL FORCE AND
BENDING MOMENT TO THAT PRODUCED BY LIVE
LOAD ONLY

Fig.7. The effect of temperature change on deflection
and internal forces.

Example 2
The space single layer dome shown in

Figure 8 has been analyzed under linear
and uniform temperature changes. Nodal
co-ordinates of the dome are provided in
Table.1.

All members have the same cross-section
tube size 30x1.6 mm and its properties are:

A=143.35mm? [=15156.069mm*
J=28714.285mm* E=210KN/mm?
G=81KN/mm? a=11x10"°

The Six support nodes

(1,3,8,12,17and19) are totally fixed. The
dome is carrying live loads at nodes
(2,4,5,7,9,10,11,13,14,15,16and 18).

Figure 9 shows the effect of linear
temperature change on the load-deformation
relationship for the following three cases:
Case A Live load only

Case B Live load + linear temperature change
(ATin=-20°C &AT:=+20°C)

Figure 10 shows the effect of uniform
temperature change on the vertical deflection
of joint (10) , normal force in member (6-10)
and M: of member (6-10) at end (6) relative to
that produced by 0.1 KN live load on nodes
(2,4.5,6,7,9,10:1151 840 4 15 6and 18] .

Fig.8.Model geometrv and node numbers .

Table. 1 Nodal co-ordinate of space single laver dome

X mm Y mm Z mm
1 -2500.0 -4330.1 0.00
2 0.00 -4330.1 100.5
3 2500.0 -4330.1 0.00
4 -3750.0 -2165.1 100.5
5 -1250.0 -2165.1 300.5
6 1250.0 -2165.1 300.5
7 3750.0 -2165.1 100.5
8 -5000.0 0.00 0.00
9 -2500.0 0.00 300.5
10 0.00 S0I00 400.0
11 2500.0 0.00 300.5
12 5000.0 0.00 0.00
13 -3750.0 2165.1 100.5
14 -1250.0 2165.1 300.5
15 1250.0 2165.1 300.5
16 3750.0 2165.1 100.5
17 -2500.0 4330.1 0.00
18 0.00 4330.1 100.5
19 2500.0 4330.1 0.00

Case C Live load + linear temperature
change (ATin=+20"C&ATu=-20“C)
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It can be noticed from fig. 9 that either
case B or case C decreases the maximum
carried load by about 20%.

Tr
09 |
e |
0.7 |
o 1
06 |
05

VERTICAL LOAD OF JOINT (16) IN KN

04 | —e—CASE A
032 - CAES B
0.2 —a—CASE C
01
0 &
0 10 20 30 40

VERTICAL DEFLECTION OF JOINT (16) IN MM

Fig. 9 The effect of temperature change on the load-
deformation relationship.

One may observe from fig. 10 that the
temperature change can increase the
deflection normal force and bending
moment many times or reverse them to the
opposite directions. Also, excessive
temperature drop makes the stresses in
some members reach yielding stress without
any increase in live load.

—e— DEFLEC.

N F

——BM

TEMP. CHANGE ONLY
&
[

NORMALIZED DEFLECTION ,NORMAL FORCE AND
BENDING MOMENT RELATIVE TO THAT PRODUCED
BY LIVE LOAD ONLY

Fig.10. The effect of temperature change on the
deflection and internal forces.

Figure 11 shows the ratio of the normal
force in member (6-10) resulting from
temperature change only compared with
Euler load.

TEMP. CHANGE ONLY

THE RATIO OF THE NORMAL FORCE IN
MEMBER (6-10) RESULTING FROM
TEMPERATURE CHANGE ONLY TO THE EULER
LOAD

Fig. 11 The effect of temperature change on the normal force
in member (6-10) compared with Euler load.

From the figure it can be concluded that
temperature rise causes axial force to reach
Euler load more rapidly.(A 50°C rise produces =
64% of the Euler load.)

Example 3
The space double layer grid shown in figure

12 has been analyzed to study the effect of
uniform temperature change on the load-
deformation relationship, the maximum load
carrying capacity, deformations. and internal
forces.

All members have the same cross-section : a

tube size 30x1.6 mm with the following
properties :

A=143.35 mm? [=15156.069 mm*
J=28714.285 mm* E=210KN/mm?
G=81KN/mm? a=11x106

Because of symmetry only one fourth of the
double layer grid has been analyzed.

The double layer grid is carrying
concentrated live loads at
nodes(5,6,7,12.13.14.
19,21,and23)

Figure 13 shows the effect of uniform
temperature change on the load-deformation
relationship for the following three cases.

Case A Live load only
Case B Live load + temperature drop= -20°C.
Case C Live load + temperature rise = +20°C.

It is noticeable from fig. 13 that the uniform
temperature drop of case B increases the
maximum load carried by the double layer grid
with percentage of 10% and vice versa for case
e
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9000

2728

Fig. 12 Model geometry and node numbers of the double
layver grid.

VERTICAL LOAD OF JOINT (14) IN KN

-10 0 10 20 30 40
VERTICAL DEFLECTION OF JOINT (14) IN MM

Fig.13. The effect of temperature changes on the load-
deformation relationship.

Figure 14 shows the effect of uniform
temperature change on  the vertical
deflection of node (13), normal force in
member (7-14) and M, of member (7-14) at
end 7 relative to that produced by 1 kN
concentrated  live loads on  joints
(5,6,7,12.13,14,19,21and 23), respectively.

From fig. 14 one may recognize that the
temperature change has a minor effect on
the normal force in member (7-14). Besides,
the temperature change has a considerable
effect on the deflection of joint (13).
Although the effect of temperature change
on the bending moment is considerable, it
can be neglected because the bending

moment produced in such structures is very
small.

40 —e— DEFLEC.
] -8 NF
[
ﬁ 2 —+—BM
o
z 10
w
o 0
Z - 100 1 2
4
b -20
s
o -30
=3

-40

£0

NORMALIZED DEFLECTION, NORMAL
FORCE AND BENDING MOMENT RELATIVE
TO THAT PRODUCED BY LIVE LOAD ONLY.

Fig.14 .The effect of temperature change on the deflection
and internal forces

FigurelS shows the normal force in
member (7-14)&(11-18) resulting from
temperature change only compared with Euler
load.

From fig. 15. it can be noticed that the
temperature change has an effect on the
normal force in member (7-14),e.g. 50°C can
produce one fourth of Euler load. Also, it can
be concluded that the normal force in
members between supports resulting from
uniform temperature change is an enormous
force and it must be considered in the design
of such members.

—+—MEMBER(7-14

TEMP.CHANGE IN DEGREE

-&— MEMBER(!_1")

THE RATIO OF THE NORMAL FORCE
RESULTING FROM TEMPERATUR
CHANGE ONLY RELATIVE TO THE EULER

FIG.15 . The effect of temperature change on the normal
force in member (14-21) compared with Euler load

8. Conclusions

The conclusions
follows:

may be summarized as
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1-The temperature changes have
considerable effect on the behavior of
some space structures.

2-1t is possible for some space frames to be
subjected to temperature change and yet
the maximum load capacity remains
unaltered.

3-The maximum load of space domes is
seriously affected by the temperature
changes than other space frames.

4-The maximum load of space double layer

grid is considerably affected by
temperature changes.
5-The temperature changes have

considerable effect on deformation of all
type of space structures.

6- For space single layer domes the effect of
temperature changes on the normal force
is so destructive that it may produce a
normal force in some member equal to or
greater than Euler load.

7- Excessive temperature drop may cause
yielding of some members in single layer
domes.

8-The shallower the single layer dome the
more dangerous the effect of temperature
changes.

9-The larger the span of the double layer
grids the greater the effect of the
temperature change on these structures.

10-Using  moving supports for space
structures make them more durable to
the temperature changes.

11-When using hinged or fixed supports for
double layer grids or space trusses, the
design forces in members between
supports can be approximately calculated
as follows
Pr=PLL+ 0.E.AThax where

Pr The total designed force in member.

PL.  The force in member due to live load

Tuex  The maximum expected temperature

change

Notations

The following symbols are used in this paper

A = cross-section area

[B] = a local static matrix which relates the
relative end displacements of a member
in current local x°,y°,z¢ coordinates to

the end deformations of the member in the
updated local X,y,z coordinates
[B] = the instantaneous global equilibrium

matrix
b = the width of the cross section in MM
bin,b2n= the bowing functions for the base

member about axes n(n refers to axes

y©,29)

cin,c2n= the stability functions of the base
member about axes n(n refers to axes
ye,27)

d = the depth of the cross section of a member
in MM

E = modulus of elasticity

e = change in bar length

{F} = vector of 12x1 represents the element end
forces in the direction of its local updated
coordinates X,y,z

G = shear modulus

[Kr]= a nxw structure or global tangent
stiffness matrix of the whole structure in
axes X, Y,Z

[ki] = a 12x12 member tangent stiffness matrix
in the structure global axes X.Y,Z

L = initial member length

Lc = current deformed member length

{Pret}= vector n~r1 represents the reference

applied live load in the direction of the
global structure coordinates X.Y.Z

{P} = vector nx1 represents the total applied
load=7.L{P;ei}

[R] = a 12x12 element rotation matrix which
relates the element end forces or
deformation in the direction of the
structure global axes X.Y,Z to their
corresponding values in the directions of
the element updated local coordinates

X2

[r] = a 3x3 element rotation matrix

[t] = a6x6 member tangent stiffness matrix in
its local current member coordinates
X, y¢,2z¢

[T] = a 12412 member tangent stiffness matrix
in the member local axes x,y.z

To = initial temperature

{0 = final temperature

o = coefficient of linear thermal expansion

{ve} = avector nx1 represents the generalized

displacements
element s
XC ,y(‘ ; Z(_‘

in the directions of the
current local coordinates
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fvi = a vector of nxl represents the
generalized displacements of the
structure nodes in the directions of the
structure global coordinates X,Y,Z

6x,0y,0. = rotation of node about the global
structure X,Y,Z axes

AL = live load parameter
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