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In this work, the effect of the order of linear damping on the solution of free harmonic
oscillators with nonlinear perturbation is studied using the normal form method ( NFM ).
The demonstration was given for the unforced Duffing’s oscillator. First we investigated the
case in which the damping is of second order and the results are compared with those of
first order damping. Second, the case in which the damping is not infinitesimal i.e. of order
o(1) is investigated. For the first case, only the phase is affected by the free functions in
comparison with the results of first order damping in which both the phase ¢ and the
amplitude p depended on the free functions. For the second case no free functions can be
added to the transformation expansion and so the NFM fails to investigate several possible
zero - order solutions by searching for the corresponding free functions coefficients. It is
also shown that for this case of damping, the NFM becomes disadvantageous in comparison
with the well-known traditional numerical methods.
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1. Introduction

The problem of reducing an autonomous
system of ordinary differential equations to its
simplest, normal form by means of a change of
variables was first formulated by Poincare [1]
and later developed by Lyapunov [2] and
others [3] and [4]. The results of the most
general character were obtained by Bruno [5].
In this method, the normal forms are
generated by either the method of Lie
Transformations [6]-[8], or by a direct Taylor
expansion [9]-[11]. Within the framework of
this method, the freedom of choice of the zero
- order term of the solution of undamped
nonlinear  harmonic oscillators was
investigated in [11]. In [12], the same problem
was studied but for damped nonlinear
harmonic oscillators. The demonstration was
given for the unforced Duffing’s oscillator in
both [12] and [11].

In this work the effect of the order of
damping on the solution obtained by this
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method is investigated for the same kind of
demonstration. In section II, the normal form
expansion of the unforced Duffing’s equation
is shown for both the infinitesimal damping of
any order and when damping is not
infinitesimal of order o(1).

In section III, some possible zero - order
solutions are shown when the damping is of
order o (e2) and are compared with those of
[12] where the damping is also infinitesimal
but of order o(g). In section IV, the
mathematical sophisticated steps to get the
zero -order solution when the damping is of
order o(1) are presented.

2. Normal form expansion of the unforced
damped Duffing’s equation

The unforced linearly damped Duffing’s
equation [13] is

i+ch+x+sx3=O, (1)
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where ¢ is a small parameter and cq4is the
damping coefficient.

ca depends on the order of damping. It can
take the value of (g2, (e when the damping is
infinitesimal of order o(g?), ofe) respectively.
where { is the damping factor. Also, itcan
take the value { when the damping is not
infinitesimal i.e. of order o(1). Substitute,

z=X+1X, (2)

in Eq. (1), it becomes

. . ie * 3 Cd *
=-iz-=(z+ —-AL(z-2%),

z=-iz-% (z+2) 5 ( ) (3)

where an asterisk denotes complex conjuga-
tion. A direct series expansion of z is written
as:

z=u+ ¥ " To(uu), (4)
n21

where the zero-order solution u satisfies an
equation of the following general form

u=-iu+ g e U, (u,u). (5)

n21

By substituting from (4) and (5) in (3) and
equating coefficients of en on both sides of the
equation , we get the following relation
between Un an T, when damping is
infinitesimal of any order

U, = [Zo,Tn] + I]n s 6)

where z,=iu is the unperturbed part of the

solution, U, are known terms computed from

lower order contributions that include both
the effect of the infinitesimal nonlinear
perturbation €x3 and the infinitesimal linear
damping [12]. The first term on right hand
side of Eq. (6) is the Lie bracket [12] and [11]
defined by

aTn _iu* aTn

(26, Tl = =T, +iuGE 23

(7)

The same relation (6) between U, and Tn
was obtained in [11] for the undamped case

but there Un included only the effect of
infinitesimal nonlinear perturbation.
Meanwhile, when damping is not infinitesimal,
i.e. ca = {, by substituting from Egs. (4) and
(5) in Eq. (3) and equating coefficients of " on
both sides of the equation, we get some

coefficient of g° having the value - %(u -u’).

This value can not be made equal to zero,
because the vanishing of { means the
undamped case previously studied in [11] and
the equality between u and u® means that u is
real and from (4) z becomes also real, hence
the substitution of Eq. (2) becomes an identity
and consequently the whole procedure is not
valid. So to overcome this difficulty, when the
damping is not infinitesimal, the zero - order
solution u has to satisfy a modified equation
of the form

1L1=—iu—%(u—u*)+ r g* U (uu') (8)

fnzl

Upon substituting from Egs. (4) and (8) in
Eq. (3), no coefficient of €° is present and on
equating coefficients of € on both sides of the
equation, we get the following modified
relation between U, and T,

Un =[Zo’Tn]+0n +[ZI’Tn]’ 9)

where the damping bracket [z1,Tx] is given by

T,
Yy

(20 Tal = 3L w-uw)G - Ty~ (1, - T, (10)

The normal form method consists of letting
Un be composed of only resonant terms that
have the same phase as the linear term u.
These are terms of the form uk*! uk and
their linear combinations (k is an integer).
Since in Eq. (6), Tx is enclosed within only one
bracket (the Lie bracket) and since the Lie
bracket of any resonant term vanishes, a vast
variety of resonant free terms can be added to
each Tn. This can be interpreted as the
freedom of choice of the zetro - order solution.
In order not to increase the number of terms
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in each Ty , free terms of the same form as the
resonant terms of U, were added to each Ty,
[11, 12, 14]. Of the infinitely many possible
choices of the free coefficients, the ones that
were investigated in [11], [12] and [14] were of
either physical or mathematical interest.

In section III, the same choices of the free
coefficients and the corresponding zero-order
solutions are shown when the damping is of
order o(g?).

However, when the damping is not
infinitesimal, we have to use Eq. (9) for the
relation between U, and Tn. Unfortunately the
damping bracket, [z, Tx] in this Eq. does not
vanish for any resonant term of the form uk+!
u’%k, so, no free functions of this form can be
added to each T, and as a result the main
advantage of the NFM is lost. Yet, the NFM
can be used to get specific solution for specific
initial conditions the mathematical procedure
is shown in section IV .

3. Zero-order solution for infinitesimal
linear damping of order o(c2)

Putting cq = (e?, we get from Egq. (6) for
n=1, 2 the following values of T, , Tz, U; and
Uz

Tl=.1%1.13—1%u1.1'2 %u +au?u, (11)
S A & Fe
Ty =fom" +o3mg Hig o v’
+(5—6122-—~1%a)u u3
1 SRR
o ——auu-——u
(1024 32 M 12 (12)
—%iu’+[3u3u'2+yu,
U, =—-%iu2 u', (13)
(256 4°‘)iu3u* -3u (14)

where, o, B,

resonant terms.
It is worth while to mention that T; and U;

in Egs. (11) and (13) are identical with T; and

y are the coefficients of free

U; of the undamped case [11]. This is justified
because of T; and U; are terms of order o(g)
and damping is considered to be of order o(g?).
Also T2, Uz in Egs. (12) and (14) are simpler
than those of [1] where damping was of order
o ofg). This is due to the fact that the effect of
the damping is decreased by increasing its
order. Substituting from Egs. (13) and (14) in
Eq. (5) we get

g el 3 Sy e 2 _ 3 by (19)
u= 1+8 guu (————256 4a)euu Ce]u

Writing u in polar form as
u=pexp(i9) , (16)
where p and ¢ are real functions of time t.

Substituting from Eq. (16) in Eq. (15), and
separating real and imaginary part we get

ho =2
p=-3e%, (17)
: 3 2 81

sdl42gp? (20 (18)
¢ ’[ 8 (256 4 )8

From Eq. (17), the variation of p with t is

independent of the free functions, and that of
¢ with t is dependent on one free function
whereas p and ¢ in [12] where the damping is
order ofe) each depended on two free
functions.

Integrating Eq. (17), substituting the result
in Eq. (18) and integrating the resulting Eq.
we get;

p=p, exp(-3e2), (19)

and

(20)
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where p, and ¢, are the initial values of p and
¢, respectively. It is obvious from these two
equations, that through o(e?), only the phase
¢ is affected by the value of the free coefficient
a. Putting £ = o in Eq. (17), p becomes of

constant value and so d) in Eq. (18). This

agrees with the result of the undamped case
[11]. Also, in Eq. (18), o is considered to be
real as in [11], while in some cases the free
coefficient in [12] had had to be assumed of
complex value.

In the following subsection, we present
some of the choices of the free function

3.1. No free function
This is the usual choice for which the

phase ¢ is obtained by putting a=o in Eq. (20)
This gives

= - _3_ 2 —Cezt Sa
o=(¢, —t)+ 8et pole 1)
51 - 24k sty
- eee—— 4 —
512¢ 0 Y

3.2. Minimum value of Uz

The minimum normal form (MNF) choice is
obtained by letting all Un-1,2 be vanished [12],
[12] and [14]. Due to damping [12] or for
systems of higher dimension [14], U;can not
be made to vanish. So from Eq. (14) Usmin the
minimum value of U, is

U2min =_£u’ (22)
2

and occurs when

aaals (23)

64

For this case, from Eq. (20), the variation of
¢ with t becomes

¢ = (¢o—t)+ pale "t - 1). (24)

3.3. Simplified application of initial conditions,

This is obtained by requiring that the
initial conditions be satisfied by the zero-
order solution u only. This makes

u(t = 0) = po exp(if,) = X, +i Xo ) (29)

and all higher order terms vanish at t=o.
If the initial conditions are such that x5 =0,
one has

p =

& xo,and¢0 =0, (26)

for the initial values of p and ¢, respectively.
From Eq. (11), when 4 =357 , T, vanishes at

t=0, consequently from Eq. (12), T2 vanishes at

t=0 when p=— (2)34 and el o C

(20) the variation of the phase ¢

From Eq.
with t becomes

b=-t+22ple S 1)

=22 p e t-1).

27
21 (27)

“512¢

3.4. Elimination of frequency components

If we substitute from Eq. (16) in Eq. (11},
we find that there are 2 terms each of
argument + 3¢ and 2 terms each of argument
t¢. As for T;, there are, 2 terms of argument
* 5¢ , 2 terms of argument + 3¢ and 4 terms
of argument + ¢. To eliminate terms of
principal argument + ¢ in T,, one needs to

3
have a = E and to eliminate those in T, , one

can take B=

This choice of free function coefficients
makes the zero-order term orthogonal to all
higher order terms through second order. For
this value of a, from Eq. (20) the variation of
¢ with t becomes,

- 15 and :5_..
3¢ kil ok 4
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¢ =(¢o—t)+ Cp,,(e@‘—)
(28)
15 ( —2C€2 ).
“B12cPe

4. Zero—order solution for noninfinitesimal
linear damping

Putting cq = { and by using Eqgs. (7), (9)
and (10), we get the following values of T;, U;
for n=1

Ti=au3 + bu u2 +cu”3, (29)
e i > 3 B g_ NI

where the coefficients a, b, c satisfy the
equations
(21+C)a+§-c =§ (31)
(2i-c)b+%cc=§i , and (32)
Qa" - _g_ —_ 1 = _i- .

5 2b+(§ 4i)c g (33)
From Eq. (30), U; depends on the coefficients

of the terms of ' T; which is not the case in
section III where the damping is infinitesimal
of order o(e?). Separating the real and
imaginary parts from Egs. (31 -33), we get 6
equations in 6 unknowns, the real and
imaginary part of a, b, and c. Hence T; and U,
can be obtained from Egs. (29) and (30). Also
when n =2, we get for T; and U;

To=duu’+e u2u*3+fuu*4 + gus+ hu's, (34)
and

—(=3ib-3ib - 3ia -3¢
Uy =( 81b 3 ib* 81a 81(: -2Cd + (35)
%e' —%Ce)u u?,

where d, e, f, g, and h satisfy the equations

. & « S, __ 3. 9.2
2(1+§)d+§f 2€;g— 81a 2(;a .
a3 e, 3. .. 3.b.
—3§ab+§§ab +—1c +—8—1 ,
2(-i+Lje-2f = 3ib-3 gm-%am*(w)
. : 3. A3 sy e
-3Ca b+—8-1c +gia +§1b,
Cd -Ce+2(- 21+Q)f~——§h=-1—§1c+§1b (38)
35 . .
+zia —~2—Ca - 3¢cb +-2-qbc,
C C - FP
d-2(2i+{)g - 81a 41c, (39)
and
%f—%g'+2(3i—§)h=—%ia‘—%ic : (40)

receptively, from which we get 10 equations in
10 unknowns, for the real and imaginary
parts of d, e, f, g and h. Solving these 10
equations, T;, and U; can be obtained from
Egs. (34) and (35), respectively.

Substituting the values of U; and U; in Eq.
(8) the resulting differential Eq. can not be
written in a form like that of Eq. (15) and
hence writing u in polar form is not useful for
finding the solution of this differential
equation.

5. Conclusion

We can conclude that when the damping is
not infinitesimal i.e. of order o(l), no free
functions can be added to each T, and
consequently each U, depends on some of the
coefficients of the terms of each of Ty,
k=1,2,...,n and this makes the analytical
solution of Eq. (8) for the zero-order solution
quite difficult. And so, it is better to use the
traditional numerical methods for finding the
solution of Egq. (1) Meanwhile, when damping
is infinitesimal, the MNF method proved to be
advantageous whether the damping is of order
o(e) as shown in [12] or of order o(e?)as shown
in section III of this paper.
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Nomenclature

NFM Normal form method

MNF Minimum normal form

) Phase or principal argument of zero —
order solution u

p Amplitude of zero - order solution u

T Time

x Dynamical Variable

% Derivative of x with respect to the
time

€ Small parameter

Cd Damping coefficient

" Damping factor

z Complex dynamical variable

z* Complex conjugate of z

u Zero - order solution

Tn Expansion Term of order n in z

Un Expansion term of order n in u

U, Expansion term of order n in Uy
o, B, A Coefficients of free functions
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