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A new training approach for analog VLSI neural networks has been proposed. Although the
approach relies mainly on off-chip learning, it takes advantage of the chip in-loop supervised
learning by taking into account the actual transfer functions of the hardware network building
blocks.  For this purpose, a computer program based on the back-propagation learning
algorithm has been constructed. The mathematical equations describing the network functional
units (multipliers and sigmoids) and which are implemented in the software program, have
been obtained from the fitting of the hardware simulated characteristics of those units. After
training, the final updated weights are downloaded to the network for feed-forward operation.
In this way, the overall training process can be significantly sped up and a large chip area
allocated for on-chip learning can also be saved. The validity of this approach has been verified
through design and simulation of different network architectures in different applications such
as function approximation and character recognition. The effect of applying noisy input
patterns on the trained network performance has also been studied.
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of the learning algorithm is to find the

optimum set of weights, which result in the
solution of the problem.

INTRODUCTION
n artificial neural network (ANN), is
defined as a computing system made up

of a number of simple, highly interconnected
processing elements, which  process
information by their dynamic state response
to external inputs. In other words, neural
information processing is an alternative form
of computation that attempts to mimic the
functionality of human brain in solving
demanding problems [1]. The combination of
the topology and the values of the synaptic
weights in an ANN
functionality of the network. The topology is
usually chosen -fixed and the learning
algorithm determines the weights. The object

determine the .
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There is a great deal of research effort
devoted worldwide to hardware
implementation of neural networks. The
rapidly developing very  -large-scale
integrated (VLSI) circuit technology provides
an ideal medium to meet the computational
requirements of the complex applications of
those networks. This, in fact, is due to two
principal reasons [2]: First, the high
functional density achievable with VLSI

'technology permits the implementation of a

large number of identical, concurrently
operating neurons on a single chip, thereby
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making it possible to exploit the inherent
parallelism of neural networks. Second, the
regular topology of neural networks and the
relatively small number of well-defined
arithmetic operations involved in their
learning algorithms greatly simplify the
design and layout of VLSI circuits.

VLSI neural network chips come in many
kinds of implementations including digital,
analog and hybrid techniques. The largest
number of available ANN chips is digital and
most of them use CMOS technology [3]. For
the designers, digital technology has
advantages of mature fabrication techniques,
weight storage in RAMs and accurate
arithmetic operations within the number of
bits of the operands and registers. Analog
implementation of ANNs have a number of
unique advantages when compared with
digital realization [4]. The primary motivation
for implementing an ANN using analog
technology is the speed, since analog circuits
can respond in a real time to analog inputs.
Furthermore, analog neural networks can
exploit physical properties to perform some
network operations (current summation, for
example). The hybrid approach for the VLSI
implementation of neural networks has been
built on the merits of both analog and digital
technologies. A signaling technique that
lends itself to this hybrid approach is the
pulse stream or simply, pulse modulation
[5,6]. This technique is inspired by
neurobiological models, since it has been
known that neurons in the brain signal one
another using pulse-frequency modulation.

In the present paper we deal with analog
implementation of multi-layer feed-forward
neural networks (MLFFNNs) which can be
trained using supervised learning. An analog
multi-layer network can be trained in three
ways [7]:

Off-Chip

In this method, the training is completely
performed off the chip (i.e. no chip response
is used). The weight adaptations are carried
out on a computer and the final weights are
then downloaded to the network. The
performance of this method depends heavily
on the matching between the network model
used in the computer and the real network
implementation.

Chip In-Loop

In this method, the weight updates are
also computed on a host computer and
downloaded to the chip. However, the chip
response is used in the weight optimization
process, where the chip is used in the
forward pass, and a host computer is used in
the feedback (weight adaptation) pass. Asa
result, the matching between the model and
the mnetwork hardware is considerably
increased in comparison with the off-chip
learning.

On-Chip

In this case, both the feed-forward
structure and all circuitry required for on-
chip learning (feedback pass) are realized on
the chip. The advantage of this approach
among others is the absence of interfacing
with a host computer. The drawback of on-
chip learning is that algorithms such as
back-propagation require over 12 bits of
resolution for the weights for successful
training. Another drawback in the
implementation of back-propagation on a
chip is the complexity of the circuitry and
the additional interconnections required for
the backward propagation of the errors.

In this paper, a training approach for
MLFFNNs inspired by the chip in-loop
learning, is proposed. In this approach, the
transfer functions of the network functional
units (synapses and neurons) are obtained
from the realized hardware counterparts and
implemented in a software program based on
the back-propagation learning procedure.
After training, the final updated weights are
downloaded to the network hardware version
for feed-forward operation. In this way, the
learning can be completely performed off-
chip. This will significantly speed up the
learning process and save a large chip area
allocated for on-chip learning. The proposed
approach has been verified by applying it to
different MLFFNN architectures in different
applications such as function approximation
and character recognition.

The paper proceeds as follows: in the next
section, a brief discussion on the back-
propagation learning algorithm for MLFFNN
is presented as a basis to understand the
proposed pseudo chip in-loop training
approach. Next, the hardware implemen-
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tations of the analog neural network building
blocks (synapse and neuron units) are
studied. Finally, the verification of the
proposed training approach is carried out,
through design and simulation of analog
MLFFNNs with different architectures in
different applications.

PSEUDO CHIP IN-LOOP BACK
PROPAGATION LEARNING

For better understanding the proposed
approach it is instructive to present a brief
discussion on the back-propagation learning
algorithm for MLFFNNs [8]. Supervised
learning of such networks relies on the
adoption of all synaptic weights in such a
way that the discrepancy between the actual
response and the desired one averaged over
all learning examples (input patterns) is as
small as tailored for specific applications. In
the back-propagation learning, there are two
types of signals representing the data flow.
The first is the functional signal, which
originates at the input of the network,
propagates forward neuron by neuron, and
emerges at the network output as a network
response.. The second is the error . signal
which originates at the network output and
propagates backward, layer by layer till
reaching the input layer. This signal is used
for recurrent computations of the local error
gradients, which in turn are used for
updating the weights throughout the
network. The error signal ej(n) of an output
neuron j at the n-th iteration is defined as:

e(n)= dj-yj(n) (1)

where y; and d; are the actual and the
desired neuron outputs, respectively. The
instantaneous sum of squared errors E (n)
over all output neurons is given by:

¢ -
E(n)z:Zc;(n) (2)
“ =1

where N is the number of neurons in the
output layer. If P denotes the total number
of patterns contained in the training set, the
averaged squared error E,, is expressed as

B
E,.(n) = %Z Rl - (3)
p=l

The objective of the learning process is to
adjust the free parameters of the network
(i.e. synaptic weights and thresholds), so as
to minimize E.,. Figure 1 shows a block
diagram of a single output neuron j fed by a
set of M functional signals (X, to Xy
produced by the previous hidden layer. The
net internal activity Vj(n) produced at the
neuron input is given by:

A
Vi) =K ¥ W (m)X;(n) (4)

i=0
where W;; is the synaptic weight associated
with the input X, and K is the gain factor of
the multiplication process. In fact, K reflects
the effect of the use of nonideal multipliers,
especially, in the hardware implementation
of analog VLSI neural networks. Note that for
an ideal multiplier, K=1. Note also that, for
mathematical convenience, the synaptic
weight Wj, corresponds to a fixed input Xo=-1
and is equal to the threshold (bias) 6j(n) of
the neuron j. The output signal yjn) is
expressed as:
yim)= ¢ (Vi(n)) (5)
where ¢ () is the neuron activation function
acting on the weighted input sum Vjn). In
MLFFNNs, ¢ () is usually a bipolar sigmoidal
function whose general form is given by:

¢ (Vj(n)) = C tanh (mV;(n))

1 - exp(-2mV,(n)) (6)
1+exp(-2mV,(n))

where C is a scaling factor determining the
saturation values of the sigmoid and m is the
sigmoid index. These two parameters reflect
also the effect of the use of nonideal sigmoids
in the hardware implementation of analog
VLSI neural networks. For an ideal
normalized bipolar sigmoid both C and m are
equal to unity.
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Figure 1 Modcl of an output neuron

Standard Back-Propagation Learning

In the gradient descent algorithm [9] to
which the standard back-propagation
learning is belonging, a synaptic weight is
updated opposite to the direction of the
gradient of the error signal E(n) in the weight
space. This is done for each weight in the
network. After sufficient number of updates,
this will result in a minimum value of E
(global minimum) at a point in the weight
space where all error derivatives are equal to
zero. Before the algorithm starts, a set of
initial weights has to be chosen. The weights
are updated with increments AWj(n) such
that;

Wj;(n+.1) = Wiji(n) + AWji(n) (7)

Each increment is made proportional to the
gradient of E so that;

cE(n)

where m is a proportionality constant
determining the learning rate. The derivative
in the right hand side of Equation 8 can be
shown to be expressed as [8]:

cE(n)
oW N (n)

AW, (n) = -1 (8)

= -K38;(m)X; (n) (9)

where Jj(n) is known as the local error
gradient of the neuron in the layer under
consideration. The calculation of §j(n)

depends on whether the neuron jis located -

in the output layer or in a hidden layer. In
the former case, 3j(n) is simply given by:

8;(n) =¢;(m'(V;(n) (10)

where ¢'(Vj(n)) is the derivative of the
activation function ¢(V,(n)) given by Equation
6. This derivative can be expressed in terms
of §(Vj(n)) as:
0 (V(m)) |
'V.(n))=Cm|1- —2—
¢'(V;(n)) i i

Note that in the present case, as the neuron |
is an output neuron, it is a straightforward
matter to compute ejn) and consequently
dj(n) for that neuron.

On the other hand, when the neuronjis
located in a hidden layer, there is no
specified desired response for that neuron.
So, the error signal for a hidden neuron
would have to be determined recurrently in
terms of the error signals of all next layer
neurons to which that hidden neuron is
directly connected. In this case, it can be
shown that the 3j(n) is expressed as:

8;(n) = Ko'(Vi()X Sy (Wig(n) (12
k

where k denotes the index of a neuron in the

next layer fed by the hidden neuron j and

Wiyi(n) is the associated synaptic weight.
Now, We can summarize the standard

back-propagation procedure as follows:

1. Initialize all synaptic weights and
thresholds (biases) of the network.

2. Present the first training pattern to the
input layer.

3. Compute the sums of the weighted
inputs, apply them to the next layer and
calculate their activations.

4. Present activations to the next layer and
repeat (3) until the activations of the
output layer are obtained.

5. Compare the output activations with the
target values for the given pattern and
calculate the local error gradients of the
output layer (Equation 10).

6. Propagate the error signals backward
starting from the output layer to
calculate the local error gradients of the
previous layer until the first layer is
reached (Equation 12).
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7. Calculate all weight and thireshold (bias)
increments (Equations 8 and 9).

8. If training by pattern, update all the
weights and biases (Equation 7), repeat
the cycle for all the training patterns. If
training by batch, accumulate the
increments and update at the end of the
epoch.

9. Repeat steps (2) to (8) until the total sum
of squared errors is less than a specified
value.

Back-Propagation Learning with Momen-
tum Updating

Standard back-propagation learning has
some drawbacks. The learning rate n should
be chosen small to insure the convergence of
the error function E to its minimum.
However, it is noted that when small nis
used the learning process becomes very slow
[9]. On the other hand, when large 1 is used
to speed up learning, parasitic oscillations
may be resulted and a convergence to the
desired solution may not be reached [9].

One simple way to improve the
standard back-propagation learning is to
smooth weight changes by overrelaxation [9];
that is by adding a momentum term such
that:

AW, (n) = nd (n)X,(n) + AW, (n - 1) (13)

where, O < a < 1 (typically, a =0.9). The
momentum term in Equation (13) can
improve the convergence rate and the steady
state performance of the algorithm.

Having summarized the back-propagation
learning process, we are in place to present
our approach to train analog VLSI neural
networks. As mentioned previously, the
hardware versions of the main building block
of the network such as multipliers and
sigmoids are nonideal. Therefore, for such
networks, either on-chip or chip in-loop
learning processes have to be employed.
Although good results are obtained in both
cases, the learning process is very slow, as
weight update has to be performed after each
pattern presentation, in the case of training
by pattern, or after each epoch, in the case of
training by batch. The weight storage may
be realized either by using hold capacitors
(10], or by using ultraviolet or Fowler-
Nordheim tunneling memories [11]. The on-

chip learning necessitates also the
realization of all circuitry required for
computing local error gradients and weight
updates. The disadvantage of this approach
is that a large part of the chip area is
allocated for the weight adaptation circuitry,
which is only utilized during training. On
the other hand, the chip in-loop learning
approach necessitates that all neurons
throughout the network are accessible,
since the chip is used in the forward pass
and a host computer is used in the feedback
pass and makes use of the neuron outputs
to compute local error gradients and then
updates the weights. This approach is
characterized by huge wiring requirements,
especially in the case of large networks.

In the present work, instead of employing
the chip in-loop learning in its conventional
way, we use another approach. In this
approach, the = transfer functions
representing the multiplication process
(synapse function) and the sigmoidal
nonlinearity (neuron function) are obtained
from the realized hardware versions and then
fitted to mathematical equations and
implemented in a software program based on
the previously discussed back-propagation
training procedure. [n this way, the learning
can be entirely carried out off-chip. This will
speed up the learning process without

loosing significant weight update accuracy
since the actual transfer functions are used.

HARDWARE IMPLEMENTATION OF
ANALOG NEURAL NETWORK FUNCTIONAL
BLOCKS

As mentioned previously, the main
building blocks of an FFNN are the synapse
and neuron units. A synapse unit, in a given
layer in the network, performs a
multiplication of an activated signal from the
previous layer and a weight associated with
that signal, resulting in a weighted signal. A
neuron unit in that layer sums all the
weighted signals connected to it and
produces an output signal, called activated
signal, according to a certain nonlinearity
(sigmoidal nonlinearity) and threshold (bias).
We are going to discuss these two functional
blocks.
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Synapse Unit

In analog neural networks, as analog
signals of both polarities are in use, the
multiplication process in the synapse unit is
carried out using a four-quadrant multiplier.
In the present work, a wide-range Gilbert
multiplier has been chosen as a four-
quadrant multiplier [12]. The range of
linearity of such a multiplier is relatively
large (about 80% of the supply rails) which is
convenient for hardware implementations of
analog neural networks: Figure 2 shows a
complete circuit diagram of a CMOS version
of such a multiplier. The multiplier consists
of three main parts: the first is the multiplier
core which is a conventional Gilbert cell
(Figure 2-a). This cell consists of three
source-coupled pairs, two of which are cross-
linked and composed of the matched
transistors M1-M2 and M3-M4, respectively.
The third source-coupled pair is composed of
the matched transistors M5-M6. The input
signals of the cell are Vi, and Vi, > and one
can show that for strong inversion operation
and assuming that all transistors operate in
saturation, the differential output current I.q
is approximately given by
Ir)d = Io] - IOQ

= \’_[221_2[_32\/1“‘1\/1&3 (13)

where (. and Pi, are the transconductance
parameters of transistors M1->M4 and M5-
M6, respectively. Although Equation 13
indicates that a perfect multiplication can be
carried out, the range of linearity of this cell
is relatively small (less than 20% of the
supply rails). To increase this range,
attenuators have to be used at the inputs of
the cell. This is the role of the second part
(Figure 2-b) of the proposed multiplier. The
attenuators employed in the circuit are
NMOS active attenuators consisting of
transistors M8-M9 and M10-M11,
respectively. In this configuration, M8 (M10)
operates in the linear region while M9 (M11)
is in saturation. Thus, it can be shown that;

Vaw.: = (I‘An) (Vx - V- VSS) + Vss (14)

where , Py ., Viis the multiplier input

" \Bs+Bs
corresponding to the activated signal from

the previous layer, Vi, is the threshold
voltage of the n-devices, and Vs is the
negative supply voltage. A similar equation
is obtained for V.. in terms of V. (the
multiplier input corresponding to the
associated weight). Although Equation 14
indicates that V. is attenuated, V.. has a
negative dc component (offset) which has to
be cancelled. This is the role of the third
part of our wide-range multiplier; the level-
shifters (Figure 2-c). The level shifters
employed in the circuit are source-followers
composed of the PMOS transistors M12-M13
and M14-M15, respectively. In this
configuration, M12 (M14) operates always in
saturation and if M13 (M1595) is designed to
operate also in saturation, one can show that
Vin1 (Vin2) is expressed as:

(15)

Vina = Vana +lva|+1’%i(vDD = Vea)
12

where Vi, is the threshold voltage of the p-
devices, Vpp is the positive supply voltage
and Vga, is the gate bias of M13 (M15). By
specifying the transistor aspect ratios and
Ve, the offset in Equation 14 can be
cancelled out.

To test the range of linearity of the overall
multiplier, the differential output current I,
is converted to a differential output voltage
Voa by using two load resistors Ri,=R.>= 20
KQ. These resistors are added for the
simulation purpose and will be replaced later
by NMOS or CMOS current-to-voltage
converters (IVCs) in the complete neural
network design.. Figure 3 shows a SPICE
simulation for the wide-range Gilbert
multiplier of Figure 2. The transistor aspect
ratios are given in the Appendix. The NMOS
and PMOS SPICE parameters are those of
the 2 um-CMOS technology [13], and given
also in the Appendix. In Figure 3 one of the
multiplier inputs, V. , is varied from -4V to
4V while the other input, V. , is kept
constant at fixed values ranging from -4V to
4V with a step of 1V. We see that the
characteristics are satisfyingly linear
throughout the specified voltage range within
about 80% of the supply rails (Vpp = - Vss =

5V).
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Figure 2 Wide-range four-quadrant multiplier.

(a) Gilbert-cell. (b) NMOS active-attenuators.

(c) level-shifters.
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Figure 3 SPICE simulation of the multiplier of Figure 2

Neuron Unit

As noted previously, the neuron in a
given layer performs two functions. First, it
sums all the weighted inputs from the
synapses connected to it. Second, according
to a certain activation function, it produces
an output sigual corresponding to that sum.
In fact, as the output of a multiplier
representing a synapse unit is in a form of a
current, the weighted input sum can easily
be performed by wiring the output nodes of
the multipliers under consideration. This
property is one of the great advantages of
analog implementation of artificial neural
networks using current-mode techniques
[14]. Thus, the summation process can be
carried out at the outputs of the synapse
units without need of special summing
circuits. = The resulting summed output
current is firstly converted into a
corresponding voltage and then activated
according to the neuron nonlinearity. So,
the neuron unit must include the following
circuits:

Current-to-voltage Converter (IVC)

An IVC can be realized by either NMOS or
CMOS circuits [15,16]. In the present work,
NMOS-IVCs have been employed. The circuit
diagram of such a converter is shown in
Figure 4. In this configuration, both M16
and M17 are ON and operate in saturation
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provided that 2Vy,< Vgge < Vpp. It can be
shown that the converter output voltage is
expressed as:

V[VC I Io VGG2

+ (16)
B(VGGQ - 2VTn) 2

where Blf, = [317 = B The term VGG2/2 in
Equation 16 represents an offset and can be
cancelled out using a level shifter. However,
as the multiplier output current is in a
differential form, then two IVCs have to be
used. The converter offsets (Vogz/2) can be
cancelled out using a high-gain differential-
amplifier stage. The amplifier differential-
mode input voltage which is proportional to
the multiplier differential output current, is
highly amplified, whereas the common-mode
input voltage is rejected and hence, there is
no need for the use of level shifters.

wdd
“/gg2
M M17 | Lo
“ive
— o
I
O —
Hh M1sl I

PR —

Figure 4 NMOS current-to-voltage converter.

The differential amplifier employed in the
present work is a CMOS differential-input
single-ended output amplifier [17]. The
circuit diagram of such an amplifier is shown
in Figure 5. The amplifier consists of a
differential stage composed of transistors
M20 — M24, followed by an output buffer
stage (a source follower, M25-M26). M27
and M28 are used for bias purpose. Now,
replacing the load resistors R,; and R, in
the multiplier circuit of Figure 2 by two IVCs
whose differential output is transformed into
a single-ended output voltage using a

differential amplifier. the overall multiplier
characteristic can be obtained. Figure 6
shows a SPICE simulation with V is varied
from -4V to 4V and Vy is kept constant at
fixed values ranging from -4V to 4V witha
step of 1V. The aspect ratios of the
transistors in the circuits of Figures 4 and 5
are also given in the Appendix. It is seen
that good linearity has been achieved over
the entire range of the input voltages. The

straight-line equations  fitting  these
characteristics are given by:
Vo=K Vi Vg (17)

where K=0.052 V-!, in this case. Note also
that when more than one multiplier are in
use with all the corresponding output nodes
are tied together, V, is expressed in a more
general form as:

M
Vo 7 KZ V'(ivwi (18)
i=1

where M is the number of multipliers in use
(number of synaptic connections to a given
neuron). This equation is implemented in
the software program describing the back-
propagation training procedure discussed
earlier, to model synapse units.

M27

Vss

Figure 5 Differential-input single-ended output CMOS-
amplifier stage.
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Figure 6 SPICE simulation of the syvnapse unit

Sigmoidal Nonlinearity

Artificial neural networks can perform
very complex nonlinear mappings [9]. They
owe this ability in part to the neuron
nonlinear transfer function. As noted earlier,
neural networks, which are trained using
procedures based on the gradient descent
algorithm, have, in general, neurons with
sigmoidal nonlinearities. These sigmoids are
compressive, monotonically increasing and
saturating functions of their inputs. They
are also characterized by a threshold (bias)
property. In analog implementations of
neural networks, these functional units can
be realized using differential amplifiers [17].
In the present work, two-cascaded CMOS
differential amplifiers have been used. The
circuit diagram of such a sigmoid generator
is shown in Figure 7. The output voltage V,
of the previous amplifier stage in the IVC
crcuit is used as one of the inputs of the
sigmoid generator while the other inputis
used for the threshold (bias) voltage V.
Figure 8 shows a SPICE simulation for the
crcuit of Figure 7 along with the fitting
sigmoidal functions. The fitting equation is
given by:
Vour = C tanh [m(V, - Vy)]

£C 1= exp[—2m(Vo il Ve)] (19)

1+ exp[-2m(V, - V,)]

where C = 1.02 Vand m = 10.47 V! | in this
case. This equation is also implemented in
the software program to model the neurcn
nonlinearity.

Vdd

L
Ly e

Vgg3

L. | M37
b

|
¥
,_.V.- e

M3l — --

it
Vo Jmes maopil, Ir% mas M3s _'I_]

Ve

V;”'a_l,'zrnaa M38 FI_V,”a

|

Vss

Figure 7 CMOS variable-threshold sigmoid generator

Vout (V)

T 05 0 0.5 1
Vo (V)

Figure 8 SPICE simulation of the sigmoid generator.
the solid curves represent the fitting sigmoidal
Functions (Equation (9))

COMPLETE ANALOG NEURAL NETWORK
DESIGN AND SIMULATION

To test the validity of the proposed

pseudo chip in-loop training approach,

complete MLFFNNs with different structures

have been designed and trained to perform
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different tasks such as function
approximation and character recognition.

Function Approximation

For such a type of applications, it is
noted that a MLFFNN with one input node,
one hidden layer containing relatively small
number N of neurons, and one output
neuron; that is 1:N:1 architecture, can be
used [18]. Figure 9 shows a block diagram of
a 1:5:1 network used in the present work.
The hidden layer has 5 neurons and 5
synaptic connections from a single input
node. This layer can be constructed from 5
multipliers (synapse units) and S sigmoid
generators (neuron units) as those previously
discussed. The output layer has a single
neuron with 5 synaptic connections from the

hidden layer, and can be constructed from 5
multipliers and one sigmoid generator. An
example of a function approximation is
illustrated in Figure 10 where the network is
trained using a sinusoidal function. The “+”
symbols denote the input/target pair vector.
After training the final updated weights are
downloaded to both the software and
hardware versions of the network for feed-
forward simulations. The solid curve
represents the trained software network
response whereas the “0“ symbols denote the
trained hardware network counterpart
(SPICE  simulation). Good agreement

between both the software and hardware
network responses and the desired response
has been achieved.

— Output

Figure 9 Block diagram of a '1:5: 1 network architecture used as a function approximator
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Figure 10 Desired (sinusoidal) response, software
simulator output, and circuit simulator
output of the trained network of Figure 9.

Character Recognition

In the present work, the network has
been trained to recognize the 26 alphabetic
characters plus the 10 digits (from O to 9).
For this purpose, each character or digit is
mapped into a two dimensional 5x5 pixel
pattern. Examples for the letter “X” and the
digit “4” are illustrated in Figure 11. The
5x5 pixel pattern represents an input layer of
25 nodes. Each input node voltage takes a
value of 1V or -1V depending on whether or
not the corresponding pixel is highlighted.

=+ =

Figure 11 Two-dimensional 5x5 pixel input patterns
representing the letter “x” and the digit
ag»

Instead of allocating one output neuron
for each character or digit, a relatively small
number of output neurons can be binary
encoded to recognize the 26+10 characters
and digits. In fact, only 6 output neurons
can encode up to 26 targets. Of these 26
possible vectors we use only 36 to encode the

26+10 targets. This will considerably
decrease the complexity of the network
especially, when fully connected network
architectures are used. In our case, a fully
connected 25:10:6 architecture has been
used. The hidden layer consists of 10 sets of
25 multipliers and 10 sigmoid generators.
The output layer consists of 6 sets of 10
multipliers and 6 sigmoid generators. The
network has also been trained using the
proposed training approach and the final
updated weights are downloaded to the
software and hardware network versions for
feed-forward simulations. Table 1
demonstrates the trained network outputs
obtained from SPICE simulations. Similar
results are also obtained from the software
network version. The fired neuron outputs
are very close to 1V (the positive saturating
value of the sigmoid generator differential
output voltage, V,.) while the inhibited
output neurons have outputs very close to -
1V (the negative saturating value of Vo).
Thus, excellent recognition has been
achieved.

Noise Effect

One of the great advantages of the neural
networks is their immunity to the noise
introduced to the input patterns of the
trained network. In other words, the network
can recognize, to some extent, the input
patterns in the presence of an additional
noise. To investigate this point in our work,
we have introduced a random noise
generator to the input patterns of the
network studied in the previous subsection
(4.2). The noise generator has random
entries from a normal distribution with a
mean = 0 and a variance = 1. The noise level
varies from OV to 0.5V with a step = 0.05V.
Noting that the training input vectors have
node voltages with binary values of -1V and
1V, noise levels up to 50% of the binary
values have been introduced. In each step,
we applied 100 sets of random noise patterns
sequentially to each input vector
representing one of the 26+10 input
patterns, and then calculated the percentage
of the average error detections. An error is
detected when at least one erroneous neuron
output has resulted. Figure 12 shows this
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as a function of the

It is noted that the

network can recognize with no error, noisy
patterns having noise levels up to 0.1V after

which the average error percentage increases
monotonically and reaches only about 18%
at a noise level of 0.5V.

Table 1 Character recognition trained network SPICE output.

Letter A Letter B | Letter C Letter D Letter E Letter F Letter G | Letter H | LetterI Letter J
-0.9873 +0.9607 | 0.9751 +0.9634 -0.9714 +0.9923 | 0.9542 | +0.9794 | 0.9212 | +0.9652
-0.9655 “0.9693 | +0.9468 +0.9606 -0.9688 0.9626 +0.9904 | +0.9656 | -0.9720 | -0.9785
-0.9635 20.9766 | -0.9690 -0.9955 +0.9536 | +0.9711 | +0.9638 | +0.9813 | -1.0035 | -0.9873
-0.9709 -0.9587 . | -0.9578 -0.9904 -0.9604 20.9700 20.9604 | -0.9731 | +0.9714 | +0.9645
70.9958 20.9662 | -0.9702 0.9664 0.9699 -0.9985 20,9746 | -0.9788 | -0.9562 | -0.9768
20.9619 -0.9722 | -0.9858 -0.9632 09716 -0.9688 20.9625 | -0.9644 | -0.9524 | -0.9806
Letter K | Letter L | Letter M | Letter N | Letter O | Letter P | Letter Q | Letter R | Letter S | Letter T
+0.9692 | +0.9696 | -0.9702 209611 +0.9655 | +0.9440 | -0.9632 | -0.9582 | +0.9856 | +0.9742
-0.9690 -0.9731 | +0.9990 +1.0027 709632 | +0.9670 | 09793 | 00717 | -0.0737 | 0.9967
70.0813 | +0.9652 | +0.9944 | +0.9605 | +0.9558 | +0.9452 | 0.0700 | 00679 | -0.0695 | -0.9650
00832 | 09628 | 09776 | 09639 | 09633 | 09731 | +0.9644 | +0.9757 | +0.9664 | +0.9646
09601 | 0.9810 | 0.9781 -0.9672 . -0.9780 20.9967 0.9685 | -0.9954 | -0.9809 | -0.9680
Letter U | Letter V | Letter W | Letter X Letter Y | Letter Z | Digit 0 | Digit 1 | Digit 2 | Digit 3
-0.9505 +0.9841 | 0.9535 +0.9611 -0.9684 +0.9575 | 09677 | +0.9446 | 09671 | +0.9907 |
20.9501 -0.9659 | +0.9751 +0.9258 -0.9639 20.9791 +0.9923 | +0.9674 -0.96g1 ] ggg«)
+0.9915 | +0.9865 | +0.9763 +0.9860 -0.9734 50805 |70.9685 | 100864 | +0.9353 | +09680
20.9754 “0.9816 | -0.0888 -0.9456 70,9816 | 70,9009 | +0.0510 | 0.0912 | 70.9834 | 70.9730
+0.9604 | +0.9847 | +0.9934 +0.9884 +0.9923 | +0.9739 | +0.9777 | +0.9546 | +0.9770 | +0.9874
0.9624 -0.9815 | -0.9553 -0.9647 -0.9919 -0.9700 20.9591 | -0.9996 | -0.9785 | -0.9898
Digit 4 Digit 5 | Digit 6 Digit 7 Digit 8 Digit 9

-0.9882 +0.9599 | -0.9576 +0.9946 20.9621 +0.9594

+0.9625 | +0.9884 | 0.9554 -0.9682 +0.9524 | +0.9791 | L

+0.9756 | +0.9677 | -0.9849 -0.9682 -0.9605 20.9819

+o.976§ 1 +09513 70,9999 -0.9817 -0.9790 -0.9670 B
+0.9982 | +0.9682 | -0.9898 -0.9969 -0.9839 0.9948

20.9851 -0.9802 | +0.9623 +0.9668 +0.9705 | +0.9749
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Figure 12 Percentage of the average error detection as
a function of the noise level introduced to
the trained network used for character
recognition

CONCLUSION

In this paper, a new training approach
for analog VLSI neural networks, based
entirely on off-chip learning, has been
proposed. The approach takes advantage of
the on-chip and chip in-loop supervised
learning approaches by taking into account
the actual transfer functions of the hardware

building blocks of the mnetwork. These
building units (multipliers and sigmoids)
have been simulated and the resulting
transfer functions are implemented in a
computer program based on the back-
propagation learning algorithm to train the

. network. This will significantly speed up the
" overall learning process, as no weight storage

is needed during intermediate weight
updates. Furthermore, a large chip-area
allocated for on-chip learning circuitry can
also be saved. After training the final
updated weights are downloaded to the
network for feed-forward operation. The
proposed training approach has been
successfully applied on feed-forward neural
networks with different architectures in
different applications. A fully connected 1:5:1
network structure has been used as a
function approximator. A fully connected
25:10:6 network structure has also been
utilized to recognize the 26 alphabetic
characters and the 10 digits using encoding.
Good results have been achieved even in the
presence of noisy input patterns with
different noise levels.

APPENDIX

2um-CMOS process parameters used in SPICE simulations [13]:

. MODEL ISM3 NMOS LEVEL=2 LD=. 225112U TOX=150E-10 NSUB=2.25642E16
+VTO=. 972134 KP=4.94E-5 GAMMA=1.0151 PHI=.6 UO=581 UEXP=.217189
+UCRIT=115146 DELTA=1.36044 VMAX=68535.3 XJ=. 25U LAMBDA=2.734263E-2
+NFS=2.859612E12 NEFF=1 NSS=1E10 TPG=1 RSH=27.28 CGDO=2.879052E-10
+CGS0=2.879052E-10 CGB0O=3.840453E-10 CJ=4.1087E-4 MJ=.465074 PB=.8

+CJSW=4.8376E-10 MJSW=. 351006

. MODEL ISM4 PMOS LEVEL=2 LD=. 177433U TOX=150E-10 NSUB=3.956783E15 -« ,-. ..,
+VT0=-.747971 KP=2'549E:5 :GAMMA=.4251 PHI=.6 U0O=299 UEXP=.193338
+UCRIT=5462.67 DELTA=912857 VMAX=29720.9 XJ=.25U LAMBDA=5.812003E-2
+NFS=1E11 NEFF=1 NSS=1E10 TPG=-1 RSH=107.4 CGDO=2.26926E-10
+CGS0=2.26926E-10 CGBO=3.471611E-10 CJ=1.8934E-4 MJ=. 439638

+CIJSW=2.264E-10 MJSW=. 207285 PB=. 7

Transistor aspéét ratios W(pum )/L{pm ):
M1=M2=M3=M4=6/2, M5=M6=2/3,

M7=11/2, M8=M10=2/2,

M9=M11=7/10, M12=M14=4/4,

M13=M15=6/8, M16=2/8, M17=30/2, M20=M21=M24=M26=M28=25/2, M22=M23=2/4, M25=2/2.2,
M29=M30=M34=M35=40/2, M31=M32=11/2, M33=2/2.5, M36=M37=7/2, M38=36/2
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