ODMQL: OBJECT DATA MINING QUERY LANGUAGE

Souheir A. Fouad, Amani A. Saad, Mohamed G. Elfeky*

Computer Science and Automatic Control Department
Faculty of Engineering, Alexandria University
Alexandria 21544, Egypt.

Data mining is the discovery of knowledge and useful information from the large amounts
of data stored in databases. The emerging data mining tools and systems lead to the
demand of a powerful data mining query language. The concepts of such a language for
relational databases are referenced herein. With the increasing popularity of object-
oriented databases, it is important to design a data mining query language for such
databases. The main objective of this paper is to propose an Object Data Mining Query
Language (ODMQL) for object-oriented databases as an extension to the Object Query
Language (OQL) proposed by the Object Data Management Group (ODMG) as a standard
query language for object-oriented databases. The proposed language is implemented as
a feature of the ALEX Object-Oriented Database Management System which is a
continuous project serving research areas related to Object-Oriented Databases.
w2l el 8 45 A aaall dadis SUL e AUl il glaall g b jleadt GLESY Al Dbl e il ey
llaall ol a laV A58 Sledind Al W Aaladl W Sl e il Silles dald dakail g i gal | geds 5ol 2
2 g 2ot sl oda 8 Ll e il Al o 5 s el e Dl Al DUkl ae) 58 alaadul LI S0 A
gt bl el dals JL...ﬁ.u\ axl aeal
Sliel S 4l bl ael g Slilll e @il ODMOQL leciind 4a =1 580 ga Ziadli 128 e cull1 Sl sl
A SN ULl 3 s de gene Aot g AN SULLN ce 68 ApulE Ladiu) 21K ds el OQL Al Ladiny) dall
o 52 g ALEX A 3l Sllall 3 1ot aUai 3 Ly ;209 ODMQL Aalll 52¢d aa jie 2405 g azanal 23 2y .ODMG
Al Sl sel b Adlaiall el jal eV Aead) Slal gie Liay Lo g jia
As yitall Ll sailead] i jadi 2 Ziaall Ao O deniall A0a00 43 g0l 538 penalg
il el b a2 A A DUl Lol Al dalal) daliid 8 LealadinY Al g Adiaall LSS 5 -

LAzl ai,j 2)'in.“
Keywords: Knowledge Discovery, in Object-Oriented Databases, Data Mining Query
Language.
INTRODUCTION The ad hoc nature of knowledge discovery

ata Mining means the discovery of

knowledge and useful information from
the large amounts of data stored in
databases [1]. There is a lot of research that
has been conducted on data mining in
relational databases to mine a specific kind
of knowledge [2-7]. Also, there are some data
mining experimental systems that have been
developed for relational databases, such as
DBMiner [8], Explora [9], MineSet [10],
Quest [11], etc. The objective of such
systems is to mine different kinds of
knowledge by offering isolated discovery
features. Such systems cannot be embedded
into a large application and typically offer
just one knowledge discovery feature [12].

*Currently. Ph.D. student . Computer Science Department. Purdue University

Alexandria Engineering Journal. Vol. 39, (2000) No. 1. 87-96.
€ Faculty of Engineering, Alexandria University. Egypt

queries in large applications needs an
efficient . query language much more general
than SQL, and this query language is called
Data Mining Query Language (DMQL). An
example of such language in relational
databases is found in Reference 13.

Although the wide variety of advanced
database systems relying deeply on the
object-oriented data model, there is no data
mining query language for object-oriented
databases. This motivates us to propose
such a language in this paper.

The rest of this paper is organized as
follows. The next section describes the
design principles of object data mining query
languages. Then, we introduce the main

87

FOUAD, SAAD, and ELFEKY

features of the proposed language, followed
by a formal and complete definition of the
language. Next we give a large number of
examples serving a wide variety of data
mining requests. Finally, we discusses
briefly the implementation of the language.
The last section summarizes the paper and
presents different work to be done in the
future.

PRINCIPLES

The definition of data mining may imply
that the two terms, Data Mining and
Knowledge Discovery, have the same
meaning. However, there are some trials to
distinguish between those two terms since
the first international KDD conference in
Montreal in 1995. It was proposed that the
term Knowledge Discovery in Databases
(KDD) refers to the overall process of
discovering useful knowledge from
databases while Data Mining refers to a
particular step in this process (14). This step
considers specific algorithms for extracting
specified patterns from data. The additional
steps in the KDD process, which are
essential before the step of data mining, are
data selection, data preparation and data
cleaning. Also, there is an additional step
after data mining. That is the proper
interpretation of the results of data mining
algorithms.

Data Selection means to select the set of
data in relevance to the knowledge discovery
process. Data Preparation prepares the
background knowledge helping in the data
mining step. Data Cleaning applies some
basic operations, such as the removal of
noise and handling missing data fields, on
data. Interpretation of the mined patterns
involves the proper representation of the
mined patterns to what may mean
knowledge. It may involve visualization
and/or evaluation.

Hence, the main principle in designing a
data mining query language is to support
the specifications of four major primitives:

1. the set of data in relevance to the
knowledge discovery process,
2. the background knowledge,

3. the justification of the interestingness of
the knowledge (thresholds), and
4. the kind of knowledge to be discovered.

The first primitive can be specified in a
way similar to that of an object query used
to retrieve a set of objects from the database.
The second primitive is a set of concept
hierarchies which assist the data mining
process. The third primitive can be specified
through a set of different mining thresholds
depending on the kind of knowledge to be
discovered, that is the fourth primitive, that
can be specified by stating explicitly the type
of knowledge to be mined in the current
knowledge discovery process. In the next
sub-sections, each one of these primitives,
except the first, will be discussed in more
detail.

Concept Hierarchies

A concept hierarchy defines a sequence
of mappings from a set of concepts to their
higher-level correspondences. Concept
hierarchies represent necessary background
knowledge to control the generalization
process that is a preliminary step in most
data mining algorithms. Generalization of an
attribute means to replace its value by a
higher one based on a concept hierarchy
tree. For example, a person’s address can be
generalized from a detailed address, such as
the street, into a higher leveled one, such as
a district, a city, a country, etc. based on the
concept hierarchy tree shown in Figure 1.
Hence, generalization of an object means to
generalize one or more of its properties
using a pre-specified concept hierarchy tree
for each property. The trees shown in Figure
1 show different levels of concepts. Note that
the word “ANY” is a reserved word for the
root of the tree. Using concept hierarchies,
the knowledge mined from the database can
be represented in terms of generalized
concepts and stated in a simple and explicit
form.

Rules :
The extracted patterns may be
represented in many forms according to the

88 Alexandria Engineering Journal, Vol. 39, No. 1, January 2000

ODMQL: Object Data Mining Query Language

data mining method used. Some of those
forms are classification trees, neural
networks, multidimensional regression, or
more generally rules. An example of such
rules represented in first-order predicate
calculus is

xdiagnosis = “Heart” And x.sex = “Male”==>x.age>50[1200 , 0.70]

indicating that there are 1200 male persons
with heart attack and that 70% of them are
over 50.

A rule is composed of a Body, a
Consequent, a Support, and a Confidence.
The Body of the rule is the part before the

implication operator representing the
examined data. The Consequent is what
follows the implication operator representing
a discovered property for the examined data.
The Support is the value representing the
number of records in the whole data

satisfying the body clause. The Confidence is
the value representing the percentage of the
records satisfying both the body and the
consequent clauses to those satisfying only
the body clause.

35-40

Good Fair
30-35 25-35

Figure 1 (a): A concept hierarchy tree for the attribute “address”; (b) A concept hierarchy tree for the attribute “GPA”

There are different types of knowledge to
be discovered. Hence, there are so many
types of rules including Characteristic,
Discriminant, Classification, Association,
Data Evolution, and Deviation rules
according to the data mining method
applied.

A characteristic rule is an assertion that
characterizes the concepts satisfied by all or
most of the objects in the set of relevant
data. For example, the symptoms of a
specific disease can be summarized by a
characteristic rule. Another example
characterizing graduate students is

Xx.status=“Graduate”==>

Alexandria Engineering Journal, Vol. 39, No. 1, January 2000 89

FOUAD, SAAD, and ELFEKY

(%x.nationality = “Egyptian” And x.gpa>3.5 [0.73])

"'Or (x.nationality = “Foreign” And x.gpa > 3.0 [0.25])
indicating that a graduate studentis either
Egyptian with an excellent GPA (with 75%
probability) or foreign with a good GPA (with
25% probability). The body of a characteristic
rule contains the specification of the set of
relevant data being characterized, while the
consequent contains the characterizing
attribute values.

A discriminant rule is an assertion that
discriminates concepts of two contrasting
sets of data. For example, to distinguish one
disease from another, a discriminant rule
should summarize the symptoms that
discriminate this disease from the other.
Another example discriminating graduate
students from undergraduate ones is
x.nationality = “Foreign” And x.gpa > 3.5 ==> x.status =
“Graduate” [1.00]

x.nationalitv = “Egyptian” And x.gpa > 3.0 ==>

x.status = “Under” [0.90]

indicating that a foreign student with an
excellent GPA is certainly a graduate, and an
Egyptian student with a good GPA is an
undergraduate with 90% probability. The
consequent of a discriminant rule contains
the specification of one of the two
contrasting sets, while the body contains the
discriminating attribute values.

A classification rule is a set of rules,
which classifies the set of relevant data -

according to one or more specific attributes.
For example, a classification rule can classify
diseases into classes and provide the
symptoms of each. Another example
classifying students is

x.status = “Graduate” ==> x.nationality = “Egvptian”
[0.60]

Or x.nationality = “Foreign” [0.40]

x.status = “Under” ==> x.nationalitv = “Egyptian” [0.85]

Or x.nationality = “Foreign” [0.13] i

indicating that regarding the status and
nationality, students are either graduates
(60% Egyptians and 40% foreign) or
undergraduates (85% Egyptians and 15%
foreign). Each distinct value of the attribute,
according to which the data is classified,
must appear in the consequent of a rule. The
body contains the classifying attribute
values for each distinct value.

An association rule describes association
relationships among the set of relevant data.
For example, an association rule may
discover a set of symptoms frequently
occurring together. Each attribute of the
relevant set of data being examined can
appear either in the body or in the
consequent of the association rule according
to its role in the rule.

A Data Evolution Rule reflects the general
evolution behavior of the set of relevant
data. Clearly, this kind of rules is valid only
in time-related (temporal) data. For example,
a data evolution rule can describe the major
factors that influence the fluctuations of
stock values through time. Another example
is
x.term = “Previous” And x.nationalitv = “Egvptian” ==>
x.gpa > 3.5 [0.80]
x.term = “Current” And x.nationality = “Egvptian” ==>
x.gpa > 3.5 [0.70]
indicating that in the previous term, 80% of
the Egyptian students had excellent GPA, but
in the currentterm, only 70% of the Egyptian
students have excellent GPA. A data evolution
rule may be a characteristic rule describing
the general behavior of a set of data
fluctuating with time, just like the above
example, or a discriminant rule comparing
the behaviors of two different sets of data
changing with time.

Thresholds

There are many kinds of thresholds that
should be specified to control the mining
process. The attribute threshold is the
maximum number allowed of distinct values
for an attribute in the generalized objects. It
is specified independent of the kind of rules
since it is considered in the generalization
step before considering the kind of rules to
be mined. The other kinds of thresholds
depend on the specified type of rules being
mined. For example, mining association rules
should specify a support threshold that is the
minimum support value of a rule, and a
confidence threshold that is the minimum
confidence value of a rule. Also, mining
classification = rules should specify a
classification threshold such that further
classification on a set of classified objects
may become unnecessary if a substantial

90 Alexandria Engineering Journal, Vol. 39, No. 1, January 2000

ODMOQL: Object Data Mining Query Language

portion (no less than the specified threshold)
of the classified objects belong to the same
class.

FEATURES
The proposed ODMQL allows the user
(data miner) to write data mining queries
and specify each primitive presented above
in a an OQL-like syntax. The following sub-
Sections discuss the main features of the
proposed language.

Kind of Rules

- The proposed ODMQL supports the
specification of the kind of rules to be
extracted in the current query. Certainly,
the specification should include the name of
this kind and some other specifications
according to the specified kind. For example,
mining discriminant rules should specify the
two contrasting classes. The kinds of rules
supported are characteristic, discriminant,
cassification and association. There is no
need to support explicitly data evolution
rules since they can be considered as any
other kind of rules with the specification of
one or more time-related attributes in any
part of the data mining query.

Note that in the following examples, the
bold and italic words indicate keywords of
the language. Bold ones must be written,
while italic ones are selected from
alternatives. The complete syntax will be
discussed later.

Example 1: mine for Characteristic rules

Example 2: mine for Discriminant rules
contrasting x.status =
“Graduate”
with x.status = “Under”

Example 3: mine for Classification rules
according to x.term

Relevant Data

The set of relevant data is specified in
the proposed ODMQL just like the way in
OQL replacing the word “select’” with “with
relevance to” to follow the meaning of the
data mining query.
Example 4: mine for Characteristic rules

with relevance to x.nationality , x.gpa

from Student x
where x.status = “Graduate”

Thresholds
The proposed ODMQL supports the
specification of the previously discussed
thresholds. Note that each attribute could
have a different attribute threshold.
Mentioning just one attribute threshold
means that this threshold is applied for all
the attributes.
Example 5: mine for Association rules
with relevance to x.store, x.product,
x.date
from Sales x
where x.date.vear = “1998”
with thresholds (Attribute =
Support = 0.35 , Confidence = 0.23)

Example 6: mine for Characteristic rules
with relevance to x.nationality , x.gpa
from Student x
where x.status = “Graduate”
with thresholds (Attribute=3,
Attribute = 4)

Concept Hierarchies
The proposed ODMQL allows the user to
specify concept hierarchies for the attributes
of the schema. The specification includes
both defining a new hierarchy, and
modifying a pre-defined one.
Example 7: define hierarchy for major :
ANY -> { Science, Art },
Science->{Biology, Chemistry,
Computer } ,
Art -> { Music, Literature , ... },
Chemistryv->{Analvtical,Biochemistry,...
Music -> { Rock, Pop, Arabic, ... }

Example 8: define hierarchy for gpa:
ANY -> { Excellent , Good , Fair },
Excellent ->[3.5..4.0],
Good ->[3.0..3.5],
Fair ->[2.5 .. 3.5 |

Example 9: modify hierarchy for gpa :
delete ANY -> Fair ,
insert ANY -> { Average , Poor },
insert Average -> [1.5 .. 2.5],
insert Poor -> [0.0 .. 1.5],
update Good -> [2.5 .. 3.5 |

Alexandria Engineering Journal, Vol. 39, No. 1, January 2000 91

"' FOUAD, SAAD, and ELFEKY

SYNTAX
The proposed ODMQL syntax is given in
an extended BNF grammar using the
following notations:
{symbol} represents zero or more
occurrences of this symbol.
[symbol] represents zero or one occurrence
of this symbol.
keyword represents a terminal of the
grammar.
<symbol> represents a non-terminal of the
grammar.
symboll | symbol2 represents either the
first symbol or the second.

Grammar
<ODMQL> ::=
<data_mining querv> |
<concept_hierarchy_querv>

<data_mining querv> ::=

mine for <rule specification>

with relevance to <projection_attributes>

from <variable_declaration> §,
<variable_declaration>}

[where <query>|

[with threshold|s| (<threshold> {, <threshold>}
)]

<rule_specification> ::= n
Characteristic rules| Association rules | ‘
Discriminant rules contrasting)<query>j with |

<query> | i e T R) R
Classification rules according to

<projection_attributes>

<threshold> ::= <threshold_type> = <numerical_value>

<threshold_tvpe> ::=
Attribute | Support | Confidence |
Classification

<concept_hierarchy_query> ::=
<define_hierarchyv> |
<modifv_hierarchy>

<define_hierarchy> ::= g
define hierarchy for <projection> :
ANY -> <concept _set> {,
<concept_definition>}

<modifv_hierarchyv> ::= modify hierarchy for

<projection> :
<modification> {, <modification>}

<modification> ::= delete <concept> -> <concept> |

insert <concept_definition> |
update <concept_definition>

<concept_definition> ::= <concept> -> <concept_set>

<concept_set> ::= { <concept> {, <concept>}} |
[<numerical value> ..
<numerical_value>]

<concept> ::= ANY | <string literal>

<numerical value> ::= <integer_literal> | <float_literal>

Note that the non-terminal <projection>
indicates either an attribute or a member,
qualified by the type name or not qualified at
all. In the previous grammar, any non-
terminal without definition represents a
non-terminal of the OQL BNF presented in
Reference 15. '

EXAMPLES

In this section, we try to develop
extensive examples to show the various
capabilities of the proposed ODMQL. The
examples presented here are grouped into
two categories, one for the concept hierarchy
queries, and the other for the data mining
queries.

Concept Hierarchy Queries
~ Example 1 shows how to define the
concept hierarchy shown in Figure 1-A.
Example 1: define hierarchy for address :

ANY -> { Egvpt , Other },

Egyvpt -> { Cairo , Alex , Suez },

Alex -> { Roushdy , Bolkly } ,

Roushdy -> { Moaskar , Souria }

Example 2 shows how to define a
concept hierarchy for a numerical attribute.
Example 3 shows how to modify that
previously created concept hierarchy by
insertion of new concepts, deletion of pre-
existing ones, and updating the values of
pre-existing ones. Figure 2 shows’ the
concept hierarchy tree before and after the
modification.

92 Alexandria Engineering Journal, Vol. 39, No. 1, January 2000

ODMOQL: Object Data Mining Query Language

ANY
0 - 1500 1500 —- 5000
A
ANY
Low Medium High
0- 500 500 — 2000 2000 - 5000
B
Fgure 2 Concept hierarchy tree for the attribute
“salary” : (A} Before modification, (B): After
modification
Example 2: define hierarchy for salary :
ANY -> { Low , Big },
Low ->[0 .. 1500 |,
Big -> [1500 .. 5000]
Example 3: modify hierarchy for salary :

insert ANY -> { Medium , High },
delete ANY -> Big ,

update Low -> [0 .. 300 |,
insert Medium -> [500 .. 2000],
insert High -> [2000 .. 50600]

Example 4 shows--how.to define a
concept hierarchy for the attribute “month”.
The concept hierarchy tree is shown in
Figure 3.

Example 4: = define hierarchy for month :
ANY -> { Halfl , Half2 })
Halfl -> { Quarter1 , Quarter2 },
Half2 -> { Quarter3 , Quarter4 },
Quarterl ->[1..3],
Quarter2 ->[4..6],
Quarter3 ->[{7..9],
Quarter4 -> [10 .. 12|

Data Mining Queries
Example 5 shows a query to mine the characteristic
rules related to the atiributes “nationality” and “gpa” of
the graduate students. Each attribute has its own
attribute threshold.
Example 5: mine for Characteristic rules
F with relevance to x.nationality ,

X.gpa

from Student x

where x.status = “Graduate”

with threshold (Attribute = 3

Alexandria Engineering Journal, Vol. 39, No. 1, January 2000 93

Attribute = 4)

10-12

Figure 3 A concept hierarchy tree for the attribute
“month”

Example 6 shows a query to mine the
discriminant rules contrasting graduate
students with undergraduates in the
computer science department according to
the attributes “nationality” and “gpa’.

Example 6:
mine for Discriminant rules
contrasting s.status = “Graduate” with
s.status = “Under”
with relevance to s.nationalitv , s.gpa
from Student s
where s.into.name = “cs”
with threshold (Attribute = 5 ,
Confidence = 0.90)

Example 7 shows a query to mine the
classification rules, related to the attribute
“nationality”, which classifies the graduate
students according to their departments.
Note using a path expression s.into.id in the
according to clause since it is supported in
the object-oriented data model. This path
expression means the department id of this
student since s.into refers to an object of the
class department and id is an attribute of
that class.

Example 7
mine for Classification rules
according to s.into.id
with relevance to s.nationality
from Student s
where s.status = “Graduate”
~ with thresholds (Attribute = 4 , Classification =
0.85) .

“sini FOUAD, SAAD, and ELFEKY

Example 8 shows a query to mine the
association rules, related to the attributes
“hobbies”, “age” and the object identifier of
the department class, considering only the
graduate students. Note using two classes in
the from clause and an explicit join
condition in the where clause. Note also the
possibility to use a set-valued attribute
“hobbies” and a method “age” which
calculates the age from the attribute
“birth_date”. Note also that mentioning the
object itself in the relevance attributes
means the object identifier that is
generalized using the inheritance hierarchy

[1].
Example 8:

mine for Association rules

with relevance to s.hobbies , d , s.age ()
from Student s , Department d

where (s.status = “Graduate”) And
(s.into.id = d.id)

with thresholds (Attribute = 4,
Support = 0.75 ,

Confidence = 0.85)

Example 9 shows a query to mine the
discriminant rules contrasting the sales
performed in 1998 with those performed in
1997 according to the attributes “store” and
“product’. Those rules may be considered as
data evolution rules comparing the behaviors
of some d4ta in two contrasting times.

Example 9:
mine for Discriminant rules
contrasting x.date.vear = “1998” with
x.date.vear = “1997”
with relevance to x.store , x.product
from Sales x
with threshold (Attribute =3)

IMPLEMENTATION

The proposed Object Data Mining Query
Language (ODMQL) is a simple language
used to mine knowledge from object-
oriented databases. Integration of such
language into the ALEX system [15] makes it
possible to examine this language and
extract knowledge from object-oriented
databases: ALEX is a continuous research
project whose objective is to build an
OODBMS that follows the standards put

D EI

forward by the Object Data Management
Group (ODMG) to be used as a testbed for
developing and evaluating different query
processing algorithms, indexing techniques,
clustering techniques, and data mining tools
for Object-Oriented Databases.

The ALEX system enables the user to
define the object database model through an
Object Definition Language (ODL), and to
build queries about the data through an
Object Query Language (OQL). Also, the
system enables the user to write the object
methods code using the C++ language, and
to call these methods through the OQL.

The proposed language is integrated into
ALEX by implementing an ODMQL processor
that executes the data mining statements as
shown in Figure 4. The ODMQL processor
includes a parser that parses the
statements, a concept hierarchy manager
that manipulates the concept hierarchies,
and data mining techniques to mine
different kinds of rules. The ODMQL
processor uses the OQL processor to retrieve
the set of relevant objects that will
participate in the current data mining
process.

G .

(ODMQL Statement

r ODMQL Processor J '

E—

[TuneptHierrd:megu I

Py |

Figure 4 Data mining subsystem in ALEX.

CONCLUSION AND FUTURE WORK

In this paper, a new query language for
mining object-oriented databases is
proposed. The concepts and features of this
language are outlined, and its syntax

94 Alexandria Engineering Journal, Vol. 39, No. 1, January 2000

ODMQL: Object Data Mining Query Language

grammar is presented. Also, some examples
of queries written in that language are
encountered. Finally, the implementation of
this language is discussed.

This language can be extended to
support other kinds of knowledge that can
be discovered from databases such as data
deviations and clusters.

Other kinds of databases such as spatial
databases, multimedia databases and video
databases may be examined to discuss the
design of data mining query languages for
them.

REFERENCES

1. J. Han, S. Nishio, H. Kawano, and W.
Wang, “Generalized-Based Data Mining
in Object-Oriented Databases Using an
Object Cube Model”, Data and
Knowledge Engineering, Vol. 25, No. 1-2,
pp. 55-97, (1998).

2. R. Agrawal, M. Mehta, J. Shafer, R.
Srikant, A. Arning and T. Bollinger.
“The Quest Data Mining System”,
Proceedings of 1996 International
Conference on Data Mining and
Knowledge Discovery (KDD96), pp.
244-249, Portland, Oregon, August
(1996).

3. J. Han and Y. Fu, “Discovery of
Multiple-Level Association Rules
from Large Databases”, Proceedings
of 1995 International Conference on
Very Large Databases, pp. 420-431,
Zurich, Switzerland, September
(1995).

4. M. Mehta, R. Agrawal, and J. Rissanen,
“SLIQ: A Fast Scalable Classifier for Data
Mining”, Proceedings of 1996
International Conference on Extending
Database Technology, Avignon, France,
March (1996).

5. R. Srikant and R. Agrawal. Mining
Generalized Association Rules. In
Proceedings of 1995 International
Conference of Very Large Databases,
Zurich, Switzerland, pp. 407-419,
September (1995).

6. R. Agrawal, T. Imielinski, and A. Swami,
“Mining Association Rules Between Sets
of Items in Large Databases”,

Proceedings of 1993 ACM-SIGMOD
International Conference on
Management of Data, pp. 207-216, May
{1993).

7. T. Zhang, R. Ramakrishnan and M.

Livny, “BIRCH: An Efficient Data
Clustering Method for Very Large
Databases”, Proceedings of 1996 ACM-
SIGMOD International Conference on
Management of Data, Montreal, Canada,
June (1996).

8. J. Han, J. Chiang, S. Chee, J. Chen, Q.
Chen, S. Cheng, W. Gong, M. Kamber, G.
Liu, K. Koperski, Y. Lu, N. Stefanovic, L.
Winstone, B. Xia, O.R. Zaiane, S. Zhang,
and H. Zhu. “DBMiner: A System for
Data Mining in Relational Databases and
Data Warehouses”, Proceedings of
CASCON™97, Toronto, Canada, November
(1997).

9. W. Klosgen, “Explora: A Multipattern and
Multistrategy Discovery Assistant”, U.
Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining,
pages 249-271. AAAI / MIT Press, (1996).

10. C. Brunk, J. Kelly, and R. Kohavi.
“MineSet: An Integrated System for
Data Mining”, Proceedings of Third
International Conference on Data
Mining and Knowledge Discovery
(KDD97), pp. 135-138, Newport
Beach, California, August (1997).

11. R. Agrawal, M. Mehta, J. Shafer, R.
Srikant, A. Arning and T. Bollinger.

“The Quest Data Mining System”,
Proceedings of 1996 International
Conference on Data Mining and
Knowledge Discovery (KDD96), pp.
244-249, Portland, Oregon, August
(1996).

12. T. Imielinski and H. Mannila, “A
Database Perspective on Knowledge
Discovery”, Communications of the
ACM, No. 11, pp. 58-64, (1996).

13. J. Han, Y. Fu, W. Wang, K. Koperski, and
0. Zaiane, “DMQL: A Data Mining Query
Language for Relational Databases”,
SIGMOD'96 Workshop on Research
Issues on Data Mining and Knowledge

Alexandria Engineering Journal, Vol. 39, No. 1, January 2000 95

16.

96

TVRE T

"™ POUAD, SAAD, and ELFEKY

S.A. Fouad, A.A. Saad, and M.G. Conference on Computers: Theory and
Elfeky, “ALEX Object-Oriented Applications, Alexandria, Egypt, August
Database Management System”, (1999).

Published in ICCTA’99 International

Received September 30. 1999
Accepted December 14. 1999

Alexandria Engineering Journal, Vol. 39, No. 1, January 2000

