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The economic design, which satisfies the safety criteria in addition to minimizing the
construction cost, is the target of all designers. Presented herein a methodology, which
describes the optimal canal dimensions to convey a particular discharge. The objective
nonlinear cost function, for the canal, which comprises excavation and lining costs is
constructed. Two constrains, minimum permissible velocity as a limit for sedimentation and
maximum permissible velocity as a lmit for erosion (if any), have been taken into
consideration in the canal design procedure. Using Lagrange’s method (Taylor 1957), the
minimum canal dimensions are obtained which give the least cost design. A simple computer
program carries out design calculations and provides the optimal canal dimensions. The
results are plotted in a set of design charts. The charts will assist designers in choosing the
proper canal dimensions guarantying minimum canal construction cost. Solved example is
provided to demonstrate the simplicity and practicability of the proposed technique.
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INTRODUCTION

The trapezoidal section is the most

common and practical canal cross
section, which used to convoy a particular
amount of water from a specific source of
water to the cultivated land. Bed width, b,
water depth, y, and side slope, z, are the
main design variables describing the optimal
canal cross section.

The objective cost function for the canal
cross section comprises the excavation cost
and the lining cost. It has been found that
the excavation cost increases linearly with
excavated depth [1]. The maximum
permissible velocity [2], which may cause
bed and side slope scour, and the minimum
permissible velocity [3], which may cause
silting, are the most concerning constraints
which describe the safety of the problem.

In general a canal of deep depth has a
small wetted perimeter and a smaller water
area, hence the cost of lining is small, while
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the excavation cost is high. On the other
hand, the canal of shallow depth has a big
wetted perimeter and a big cross sectional
area, for this canal. the cost of lining is high,
however, the cost of excavation is less. For a
steep side slope, the area cross section and
the wetted perimeter are less. The steepness
of the side slopes depends upon the angle of
repose of the soil material that forms the
bed.

Using the method of Lagrange multipliers
[3] the canal objective cost function, which
subjected to the maximum velocity and the
minimum velocity constraints, has been
minimized. For different values of side slope,
z, optimal values of the bed width, b’ and the
water depth, y have been obtained. The
obtained values of b’ and y' have been used
to construct a set of design charts for
different values of excavation and lining unit
cost.
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OBJECTIVE COST FUNCTION

The objective cost function of a canal
cross section comprises the excavation cost
and the lining cost. It has been found that
the excavation cost varies linearly with the
excavated depth [1] and the lining cost
depends on the canal-wetted perimeter and
the lining thickness. Considering a
trapezoidal canal cross section the
excavation cost C. and lining cost C;, as
follows

Excavation Cost

Considering the unit cost of excavation,
u, linearly increases with the depth, d, the
following equation can be written as:

u=kg, +k (d) (1)
where k., = the unit excavation cost at the
surface, k., = the increase of unit excavation
cost per unit depth. Using Equation 1 and
integrating an elementary volume havinga
trapezoidal shape, the excavation cost Cy
per unit canal length can be written as:

-

Cox = keo A¥ke, (3b+2zyn;% 2)

1
Where A= the cross sectional area of the
canal; b = bottom width; N flow depth

measured vertically from the bottom of the
canal; and z= side slope, (see Figure 1).

- Figure 1 Dimensions of canal cross section

Lining Cost
The cost of canal lining per unit canal

length is given by

Clin = P-t.Cy = kyj P (3)

in which t= lining thickness; C; = the
levelized cost of lining per unit volume of
lining material; ky;, = the unit lining cost (t
and kj;, are constant for a suitable range of
flow discharge) and P = wetted perimeter.

Total Cost of a Canal Cross Section

The total cost of a canal cross section,C,
,is the sum of the excavation cost and the
lining cost which may written as:

Ci = Cex + Cin (4)
Equation 4 can be rewritten as:

C: =keo A +Ke1. M +Kiin .F (5-a)
in which
M= (3b +2zy,) ‘? (5-b)

Optimization Procedure

To get the minimum-cost design of a
canal cross section per unit length, the
overall canal cost, Ct’ and the flow equation

(the main constraint) should be minimized.
The flow equation q(y, , b, z), in SI units,
can written as: -

alya b A= pp-Q0 _A®_Qu

n .

where ‘(/;)S_ = section factor; Q= flow rate; n=
o

Manning’s roughness coefficient; S.,=

98 Alexandria Engineering Journal, Vol. 39, No. 1, January 2000




Minimum-Cost Canal Cross Section

longitudinal canal slope. Applying Lagrange’s
method of undetermined multipliers with 2
as the undetermined multiplier, the following
relations are obtained:

7‘(9 “_E‘}n-o.o (7)
%— +:_%=00 (8)
aiu:_%zo.o (9)
dyn b, 2) = A« PP - 2L (10)

Vs,
Elimingting . between Equation 7, 8, and 9
one gets

€ dq_Cy dq (11)

yp Cz Cz Cyp
g _0Ciéq (12)
cb Cz ¢z b

Equation 10 is used to determine the partial
derivau'vesAE_ -Aﬁ_iand% . Using Equations

cz v,

11 and 12 the following two important
equations, which are necessary for the
minimization process, can be obtained:

N\Acdz Pez

“C_xi@_fhﬁ@) x| % 00 RGP (13)
éz \Aodv, Pdv

==L-(3b42

A=ya(btazy,) g T
fA =b+2zyv, ?M—bvn+2\;:
Cyn C.vn

CA _ > M _y;

e E N = 2

cz €z ~3

b $ 15,6} 2

(14)

6C,((16A+[36PJ_EC[(2§§-+E P |
cb\Acz Pez cz\Acb Paov,,

The partial derivative of C, is as follows
0Ci =Keo CA +kei €M +Kkyy, CP (15)

Substituting (15) into (13 and 14) one gets

A 2
gi kc] SNI klm = ~|
A 0z T T
+E._‘p[kem fA +kel fM}
p ¢z . Yy, : (16)
o CA M Cp
e [kelT+klln TJ
A Oy, €z Cz
5 G cM
+E ,.Cp ken (AA +ke1 C,. -l
Pa&y. L~ ¢ & |
ach kdi_l\_/[_ i b
Az cb cb
+E@ ]\eog_é+]\e‘.c_r\_/l_
péz|l & b | (17)

Substituting of the above relations into (16 and 17) the following two equations were obtained
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'a—" [ el(b‘ "l.‘vﬁ)“"klin(2 1+Z2)} =
A~

E 22V [l\e,(b+2zx )+ Kkg(by, +2v ]
P

3_\,:1‘\1\ klm(l)}'g

A P

2zy,

v3 2zy
(_‘:'(b + Zz}-n)\:kel :_:f'khn ——n—ﬁ—}
]~+-,Z' (18)
e
p D
2zy [k vk el\—‘-‘-}
1+2° - (19)
3

2y lx £+k
A.n el 3 lmJH—z:—

Using Equations 18 and 19 and with the
help of Equation 6 the most economical
canal cross section can be obtained. Once,
the optimal values of z *, b, and y * are
calculated and assuming the discharge, Q, is
known, the corresponding value of channel
flow velocity, V, is determined.

Case of Constant Side Slope z

Practically, for a given canal bed material
and according to the internal angle of repose,
the canal side slope, z, is decided. In this

oC
cZ

equation should hold true.

=0.0, and only the following

6C(

+B.
oy p

acAB@p]
éb p &b

oCi(a éA
cb (A v,

N
: J (20)

n\

Substituting from Equation 15 into Equation
20 yields the following equation, which is
necessary for the minimization process

(B cPJ P (a FAJ
i e
P b ov,\A b

EM(OLEA ﬁ@PJ )
_—— +kh
Ad P

el -
By

_ ﬂ(M[acA BcP)+kmé’_A[g EP]H(r _a_}j(ga_AJ
ob \Acv, Pév db\Pev, " Ob\A év,
(21)
Equation 21 may be simplified as
follows

Ll: »:( . )—P({TG ). k. % Gzl & —:(b S

- kel(a_vn + B%J +k,(b+2zy, (%) + kl|n(2vi-+7[§ _\'n)
(22)

Using Equations 6 and 22 the most econo-
mical canal cross section, for a specified

100

B

+—(l)[ke°\n+l\ }
P

value of z, can obtained. Once, the values of
b * and y ' are calculated, the corresponding
value of flow velocity, V, is determined,
which must be fallen within the maximum
and the minimum velocity limits.

Velocity-Constrains

The flow velocity, V, in a channel is governed
by the site bed material properties and
pounded by -the values of Viyax and Vg, in
which, V= maximum permissible velocity,
as a limit for erosion and V.= minimum
permissible veiocity as a limit for silting. So,
the flow velocity, V. must be checked with
the maximum, and the minimum velocity
limits.

If such flow velocity, V, is greater than
Vinax, or less than V., the optimal values of
b* and y* will not equal those given by solving
Equation 6 and 22. The proper dimensions of
the channel may be obtained by solving
equation 6 along with the following two
equations

Case 1: V< Vmin

Ay’ , b') = Q/Vmin (23)
Case 2: V> .
A(y’ 5 b') = Q/Vmax (24)

Computer Program and Design Charts
Solving Equations 6 and 22 for optimum
bed width, b’, and optimum water depth, y’,
requires iteration. A special computer
program is designed to solve the above
mentioned equations. A Graphical
correlation method with the aid of computer
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facilities, is used to construct the design
charts, Figures 2, 3 and 4, that may be used
to get both of b’, and y directly for known
values of Q, n, S,. z, Kei . and Kin , where

ke]

Kei-—=—andK, = I]i—““—, and. An initial guessing

value of both bed width, b, and water depth,

'l 7 \ 8
| 2 SQ-]’lJ |
- :1 \S, (25)
(2 1+Z° —z) |
L )
while the following equation gives the

minimum expected value of bed width, buin

y» ., is essential to start the calculation. The

expected value of water depth Ymax

X 38
equation gives the maximum Qn |
sl 3 J
= (26)

b in =2 4(\/l+z: —zJLmJ

Section Factor (Q.n/S§".5)
0 125 25 375 50 62.5 75 87.5 100

\\;\\ s e ;.S ' k K= 8‘2 m*

p .4

N - B P 06

£ —— 0.8

5 —— I 10

e
- ——
\
5 4.5 4 35 3 2.5 2 1.3 1
Water depth, Y* n meters Z=1.0

Figure 2-a Water depth Y* as a function of section factor (Q.n/ S}J A , ke1 and Kkin for 2=1.0)
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Figure 2-b Bed Water B’, as a function of section factor (Q.n/ CDS}] = , ke and kin for z =1.0)
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Figure 3-b Bed water B’, as-a function of section factor (Q.n/ S:, $ , ke and kiia for z=1.5)
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Figure 4-b Bed water B’, as a function of section factor (Q.n/ S}) : , ket and kus for z=2.5)

Alexandria Engineering Journal, Vol. 39, No. 1, January 2000



GHAZAW, SALEM and KHAIRY

NUMERICAL EXAMPLE

It is required to design a canal cross section
for a given flow rate, Q=20.0m-"/sec;
Manning’s coefficient, n=0.015; side slope,
z=1.5; and canal longitudinal slope,
S,=10.0cm/km. If the following data are
available: k.=10.0 pound/m3 (Egyptian
pound) ; k.;=2.0 pound/m?3/m; and ki,= 30.0
pound/m-.

Solution

Figure 3-afor z=1.5 is used. The top axis
is entered with the value Ql_/I; -30.0 then

SO

vertically down to K., =0.20 m'!, and
horizontally to K;,=3.0 m-!. The resulting
normal water depth y'= 3.1 ms. Figure 3-b is
used to determine the bed width, b’ =2.4 ms.
The direct solution of Equation 6 together
with Equation 22 results in y'=3.111 ms,
and b' = 2.354 ms. The corresponding
velocity of the flow is determined by direct
solution of continuity equation V=Q/A=
0.916 m/sec, which must be within the
permissible values. The minimum
construction cost is estimated using
Equation 5, C, = 678.5 pounds/m".

CONCLUSIONS
Using Lagrange’s method of
undetermined multipliers the proper
conditions for the optimal canal dimensions
b’ and y’ are obtained. Design charts, based
on the obtained equations, are also provided.
Solution of the numerical example shows
that the design charts are simple and of
practical value. The ratio of the cost
coefficient depends on the monetary unit
used. If the rafios of the cost coefficient do
not vary significantly with time and place,
there will be little variation in the optimal
dimensions. The proposed method can be
applied to other complicated canal cross
sections that can not be solved by the

traditional method of variation.
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NOMENCLATURE

= canal cross-sectional area;

= bottom width;

= optimal bed width;

= excavation cost per unit canal length;

= cost of canal lining per unit canal
length;

= total cost of canal per unit length;

= depth measured from water surface;

= the increase of unit excavation
cost per unit depth;

= excavation unit cost;

= lining unit cost;

= Manning’s roughness

coefficient;

wetted perimeter;

volumetric flow rate;

flow equation;

longitudinal channel slope;

= lining thickness;

= normal water depth;

= optimal water depth;

= side slope ratio;

= Lagrange multiplier.
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