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This paper presents a numerical model for the simulation of elasto-plastic behavior of
hybrid box columns composed of a mix of steel-52 and steel-37 plates. The results of
the numerical approach are compared with those obtained by using the ECCS curves
for the cases of homogeneous column material. The spreading of the plastic zones in

the column web and fl

e plates is obtained in both the longitudinal and the

transversal directions. A limiting value of the column slenderness ratio is suggested
to govern the use of ECCS curves for the estimation of the corresponding hybrid box

column resistance.
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INTRODUCTION

he basic problem of the elasto-plastic

stability of axially loaded columns in
the plane of symmetry has been well
understood since Von Karman's efforts [I]
in the early 20" century. The considerable
amount of research work that has been
focused on such topic since that time
represents remarkable efforts in the
development of advanced methods of
analysis.

The overall change of geometry of the
axially compressed column is usually large
enough to be of primary importance.
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[t becomes necessary, in deriving collapse
loads,

to follow the detailed behavior of the
column under a gradually increasing axial
force combined with transversal bending
moment. Theoretically, a column composed
of perfect eisto-plastic material with the
stress-strain relationship shown in Figure 1
should remain straight until either the Euler
buckling load PE or the yield stress cy, is
reached. However, this idealized problem
has a little significance for real columns, in
which unavoidable imperfections (eccentric
load, initial deformation, residual stresses,
etc.) exist.
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Figure 1 1 deal stress-strain relationship

Three decades ago, the European
Convention of Constructional Steelwork
(ECCS) has carried out an extensive
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experimental program. The main objective of
the program was to establish a concrete
reference for column buckling load. The
buckling of initially imperfect
concentrically loaded hinged-ends columns
was investigated. The test series have been
statistically treated in such a way that a
group of column buckling curves was
developed [2]. According to the ECCS
recommendations, the strength of the most
commonly used structural cross-section
shapes are expressed by three column
bucking curves a, b, and ¢ as shown in
Figure 2. Curve "a" gives the maximum
column strength for tubular cross-sections.
Curve "b" addresses welded box sections.
The third curve "c"is used to calculate the
minor-axis buckling load for columns
having wide flange 1-cross-sections. Other
column cross-sections are assigned to each
curve Figure 2 as described by Beer and
others [2, 3 and 4].
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Figure 2 Column bucking strength according to ECCS

The ultimate load is given by the relation [2]:

P, 4
P, k,
(1)
Py = A.or (2)

Where A is the cross-sectional area of the column

and o. is the vield stress of the column material.
The constant K, is giver by [2]:

5

Ko 2 ; 3)
1+a(r-02)+7" —‘/|1+a(2-0.2)+;'? I S5
4 TE
and A =—4f— 4
= VE (4)
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Where 7. is the slenderness ratic <f thz: column (( £ /i)
and arepresents the parameter of imperfection as
follows:

a = 0.206 for the curve’a”

a = 0.339 for the curve “b”

a = 0.489 for the curve “c”

The results of approximately 100 tests
with concentrically loaded columns have
included some tests on hybrid columns [5]
in which the flange and the web plates were
of different steel grades. The recommended

case (1)

ECCS curves have not clearly classified a
corresponding curve for such type of column
cross-section..

The present paper is intended to provide
a tool for the simulation of the behavior of
axially loaded symmetrical steel box column
with initial imperfection and a hybrid cross-
section (Figure 3).

Figure 3 Hybrid column cross-section

NUMERICAL MODEL

The computation of the deflected shape of
any column; -beyond the elastic limit, is
rather .complicated. This is because the
bending.-stiffness "EI" of the column is not
constant teo be a function of the bending
moment M and the load P. The column may
vield over- part of the cross-section if the
compression load or the deflections are large
enough. The bending stiffness El shall then
be reduced. The value of the yield stress and
the geometry of the cross-section will also
affect the relation between M, P and El. As
the bending moment is not constant over the
length of the column, the bending stiffness
El varies along the column length. The
relationship between M, P and El can be
determined for each particular section if the
stress-strain diagram, the distribution of oy
over the cross-section, and the residual
stress distribution are known.

Assumptions

The following assumptions are adopted in

the analysis:

- Plane cross-sections remain plane after
bending.

- The stress-strain relations for steel-37
and steel-52 have an elastic-perfectly
plastic form Figure 1

- The deformations are considered small.

- Yielding is governed by normal stress
only.

The normal strain ¢ (n)at a point 'n of
a certain cross-section situated at a
distance z from the origin, and the
deformations (v) of the pole of this cross-
section are related by the following
formula:

e (n) =g, V" n+ &dn) (5)
Where ¢, is the residual strain and s. is
the centered strain.
If the strain £ (n) is inferior to the yield
strain of the material, the fiber is still
elastic, and thus,

s(n) =E(n) [eo- v n] +ou(n) (6)

Where o(n) is the normal stress at a
point (n) of the cross section situated at a
distance z from the origin, E(n) is the
Young's modulus at point (n), and ., is the
residual stress at point (n)
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When the strain g(n) is equal to or larger
than the yield strain (o,,E,n) then;
o(n) =t oy (7)

The equilibrium of the internal forces in
the column section is given by the following
two equations:

P=laomdA (8)

My int la oy ndA (9)
In order to examine the external forces,
a column in a deflected configuration is
considered. At an arbitrary section (z = z)
as shown in Figure 4, the deflections of the
centroid of the local coordinates Z and n are
u and v, respectively, where u=0.0 as the
problem of the out-of-plane deformations is
not considered due to the geometry of the
used cross-section. As the local coordinates
(2 , m) are parallel to the global coordinates
(%X, y), the bending moment M, at a section z
produced by the applied axial force P is
given by:
Mz(exy P(vo +v) (10)
Where v, is the initial deformation expressed
by the function:
Vo = Vsin(nz/L) (11)
In which ¥ is the initial deformation at mid-
span of the column taken equal to L/1000.
This value represents a worst condition as
recorded in practice [6 and 7].
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Figure 4 Deformed column

In Equation 10, "v' represents the
additional deformation due to external axial
loading. The differential equations are
obtained by equating the internal moments
to the external moments in the deformed
configuration.

The flexural stiffness about x-axis is not
constant as it changes according to the
distribution of the yielded portion of the
cross-section. If all the nonlinear terms of
displacements are neglected and the effect
of residual stresses and initial geometrical
imperfections are considered, the differential
equation of equilibrium becomes:

E(z) v’ +Pv = Py, ' (12)

The determination of the load-
deformation response of the column under a
given load is reduced for the sake of a
solution for Equation 12.

As the problem is not approaching
closed-form solution, a finite difference
procedure is therefore employed. The
column is divided into "in" segments of
equal lengths The derivatives in Equation
12 are replaced by central differences at the
pivotal points. :

The deformations corresponding to a
given increment of external forces are
computed by an iterative procedure. in the
first iteration, an increment of the
deformations is computed by using the
flexural stiffness corresponding to the
previous known deformations. In the next
iteration, another increment of deformation
is computed by using the flexural stiffness
of the updated deformations. The
unbalanced forces can be computed by
comparing the internal forces at the
updated deformations to the external
applied forces for each iteration. Iterations
for eliminating the unbalanced forces
should continue until the unbalanced forces
are negligible.

The flexural stiffness is calculated
numerically by dividing the cross-section
into finite elements as shown in Figure 5.
The strain and stress in each element are
computed as the average values at its
centroid. The flexural stiffness can be
expressed as:
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-1, o, (MdA
(EI){—'M—)—J d=Lm (13)

v'!

Where "m" is the number of finite
divisions in the longitudinal direction. The
ultimate load is determined by the
instability condition that is imminent when
a small increment of the load results in a
large increase in deformations.

The efficiency of the theoretical model is
verified by comparing its results with those
obtained by utilizing the curve “b” of the
ECCS recommendations. Figure 6 shows the
variation of the dimensionless ratio (P, / Py)
in terms of the modified slenderness ratio

Y DR Y o
Figure 5 Cross sec
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Figure 6 Homogeneous box-
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Figure 7 Homogeneous box-column resistance-steel 52

Two cases of hybrid box columns are
investigated. Case (1) has 200x 10 mm.

flange plates of steel-52 and 180 x 10 mm.
web plates of steel-37. Case (2) has flange
plates of steel-37 and web plates of steel-52
with the same dimensions of case (1).

The proposed model is used to determine
the ultimate axial compression load for four
cases of column cross-sections. Two cases
have hybrid column cross-section as shown
in Figure 3. The third and fourth cases have
homogeneous column cross- sections, made
of steel-52 and steel-37 respectively, with the
same geometry of the hybrid columns.

Three column lengths are studied
representing short, intermediate, and long
columns. Figure 8-a shows the spreading of
the plasticized zones in the longitudinal and
transversal directions at the ultimate load
for the short column, i= 33, for each of the
four cases of column cross-section. The
corresponding load-displacement relation-

ships for the same column length are
"'presénted in Figure9-a. the study results of

concerning the intermediate column length,
7. =177, are presented graphically in Figures
8-b and 9-b for the plasticized zones and
load-displacement relationships, respec-
tively. Similarly, results of long column,
155, are presented in Figures 8-c and 9-c.

In an attempt to develop an estimation
tool for the ultimate capacity of a hybrid
column, a comparison is made between the
results of the model and the ECCS
recommendations. The variation of the
ultimate axial compression load, obtained
from the model, in terms of the slenderness
ratio (») is illustrated in Figure 10fortwo
cases of hybrid columns, cases (1) and (2).
In the same figure, the curve 'b" of the ECCS
is plotted twice for column material of steel-
37 and steel-52.
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Figure 10 Buckling resistance of hybrid column

SUMMARY AND CONCLUSIONS

A numerical model for the simulation of
elasto-plastic behavior of a hybrid box
column is presented. The investigated box
column has web plates made of steel- 37
and flange plates made of steel-52 or vice-
versa. The numerical model is verified
through the ECCS curves for the
homogeneous column material cases.

The distribution of the plastic zones in
the column plates, in the longitudinal and
transversal directions, is obtained. The
ultimate resistance of hybrid box column is
determined along with the load-
displacement relationships.

The use of high strength material, steel-
52, as flange plates with webs of mild steel,
steel-37, for axially compressed box columns
increases the ultimate column resistance in
a miore efficient way than the case of mild
steel flanges with high strength webs. The
ECCS curve for homogeneous box columns
made of steel-52 can be safely used to
estimate the ultimate resistance of axially
compressed hybrid box columns made of
steel-52 flanges with steel-37 webs if the
slenderness ratio “.” of the column is
higher than 80. For Shorter columns, . < 80,
corresponding ECCS curve of steel-37 may
be conservatively used. Further
investigations still needed to provide a closer
approach for the determination of the
ultimate axial resistance of such short
columns. Cross-section geometries other
than box sections are probable headlines for
future research work.
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