SOME ADDITIONSE TC HARDWARE-BASED DATA PREFETCHING
Alaa R. Alameldeen and Layla Abou-Hadeed |

Department of Computer Science and Automatic Control,
Faculty of Engineering, Alexandria University, Egypt

ABSTRACT

Data prefetching is used to increase the availability of data in the
cache memory so that it is present when needed. Data prefetching is
implemented using hardware or software techniques. Its basic idea
depends on keeping track of data access patterns of a program and
using this information to anticipate the location of data that is going
to be accessed next. Chen et. al. introduced three variations for
hardware-based data prefetching. Their designs handle the scalar,
zero-stride and constant-stride access patterns. In this paper, a
modification is added to account for the linear stride case. We are
specifically interested for the linear rates of 1/2 and 2 which are the
most frequent and do not involve great implementation overhead.
This extension is better suited for application programs that exhibit
"~ a. sufficiently large number of linear-stride data access patterns of
~the linear rates 1/2 and 2, such as index searching, to compensate
for the increased hardware complexity and extra prefetched data.
Preliminary experiments were held to explore the performance of the
proposed design and produced satisfactory results.

Keywords: Prefetching, hardware-based prefetching, data cache,
reference prediction.

done in hardware, i.e. hardware-based
ue to the increasing speed gap data prefetching [1, 2], or in software i.e.
between processors and memory, the software-based data prefetching [2, 3
increasing speed of the processor cannot be and 4].

exploited efficiently unless some way of e Cache hierarchies

speeding up data access from the memory e Lock-up free caches [5].

INTRODUCTION

exists. The invention of cache memories as
an intermediate storage between main
memory and the processor has been a
breakthrough, which helped to reduce the
gap between the processor speed and that
of main memory. However, memory latency
cannot be totally eliminated. Upon a cache
miss, the processor has to wait until the
data is fetched both to the cache and to the
pProcessor.

Several methods have been developed to
handle the problem of relatively high
- memory latency. Some of these methods are
[1]: '

e Data prefetching, that is fetching the
data to the cache before it is actually
needed by the processor. This can be

Alexandria Engineering Journal. Vol. 38, No. 6. B219-B225. November 1999

OFaculty of Engineering, Alexandria Universitv-Egypt AEJ 1999

Hardware-based data prefetching is
based on adding a small hardware unit that
fetches data to the data cache before itis
needed. Prefetching data to the cache
depends on the previously accessed data
patterns. Prefetching, however, cannot
eliminate memory latency completely due to
the unpredictable access patterns, as for
example data-dependent addresses [1].
Software-based prefetching, is based on the
analysis of the static program. An intelligent
compiler may insert instructions that
prefetch data many cycles in advance of
their use by other instructions, so the
program speed is not reduced [2, 3, 4].
These techniques can get more prefetches
and can help in prefetching complex access

B 219

ALAMELDEEN and ABOU-HADEED

patterns (which cannot be done in hardware
due to the high complexity), but the cost is
the addition of prefetch instructions and
calculations of the prefetched addresses,
which may reduce the program speed.
Consider a program segment of nested
loops, the memory access patterns can
be divided into the following four main
categories [1]:

1. Scalar, which is a simple variable
reference, that does not change with
respect to the loop index.

2. Zero stride, which is a reference
inside an inner loop with a subscript
expression that does not change with
respect to the loop index (but may
change with respect to the outer loop).

3. Constant stride, which is a reference
inside a loop with a subscript expression
that increases with a constant rate with
respect to the loop index, such as the
reference AJi] inside the loop of index i.

4. Irregular, which is any pattern other
than the previous patterns.

Chen et al [1] introduced three
variations for hardware-based data
prefetching: Basic, lookahead and
correlated methods. These variations
handle the scalar, zero-stride and
constant-stride access patterns. The
basic scheme depends on the
construction of a reference prediction
table (RPT) for the instructions in the
program that reference memory. An entry
in the RPT consists of the instruction
address, the previous address of the
referenced data by this instruction, and
the stride, which is the difference
between the last two referenced
addresses. In addition, an RPT entry
contains a state field that provides
information about the success of
previous prefetches for this entry. Data
prefetching is triggered when the
program counter reaches an instruction
that has a corresponding entry in the
RPT. If the state of the corresponding
entry indicates that prefetches can be
predicted, the data at address (previous
address+stride) is prefetched to cache.

B 220 Alexandria Engineering Journal, Voi. 38, No. 6, November 1999

This paper introduces a modificatio;
to the basic scheme so as to handle th
linear-stride case. Specifically, the linez
rates of 1/2 and 2 are considered
Preliminary results show the advantage
of this modification for applicatioz
program that exhibits a sufficiently larg
number of linear-stride data acces
pattern.

The rest of the paper is organized a
follows: the next section introduces th
linear stride memory access pattern. Th
section to follow presents the proposec
modification to handle linear-strids
prefetching. Then, we provide
comparison between the basic and the
modified schemes. The last sectios
presents the conclusions and fu
extensions.

LINEAR STRIDE: ANOTHER MEMORY
ACCESS PATTERN 1
This pattern is a subset of the irregula
pattern as classified before. In this access
pattern, the memory is accessed, not by a
constant stride, but by a stride thal
changes with a fixed constant
Specifically, when a constant s is
multiplied by the stride each time, the
next address referenced at this location
is equal to:
previous address * stride * s v
and stride is updated each time by
multiplying it with s. This means that we
need to prefetch the contents of two
addresses.

An example of this access pattern is
in the famous binary search. In this
program, the reference pattern for the
middle of the current array is typically a
linear stride for s= 1/2. An example for
this reference pattern is (for an array of
subscript ranging from 1 to 1000):

500 - 250 - 125 - 62 - 31 —» 46 - 54
— 58 -5 56 - 55

A HARDWARE SCHEME FOR LINEAR-

STRIDE PREFETCHING
The scheme provided here handles only
the linear-stride case that varies by a

Some Additions to Hardware-Based Data Prefetching

constant rate of 2 or 1/2. The reasons for
this are:
1. Other constants require

to left or right by 1 and the decoder is
used to control the change in stimes.

estate: The past history of the memory

multiplication operation to calculate the reference pattern of this instruction. A state

stride and the prefetched address each
time. Multiplication is a slow operation
that eliminates the performance gain
due to prefetching. The multiplication by
2 or 1/2 can be implemented using a

shift register.

2. The constants 2 and 1/2 are the
most common constants in programs
exhibiting linear strides (as in the
binary search).

The new scheme (called the
modified scheme) is a modification for
the basic scheme of Chen et. al [1]. We
adopt the RPT proposed by them with
some modifications. The following is a

description of an entry in the RPT:
~ etag: The instruction address.
sprev_addr: The last address that was
~ referenced when the program counter
reached that instruction.
sstride: The difference between the
last two referenced addresses.
sstimes: The direction of shift (for
stride) to implement multiplication by 2
or 1/2. It can take the following three
values:
0 : no shift, where the stride is not
multiplied by any constant (as in the
- previously discussed scalar, zero-stride
and constant-stride patterns).
1 : shift left, where the stride is
multiplied by 2.
-1 : shift right, where the stride is
multiplied by 1/2.

stimes is updated by the absolute
ratio between the old stride and the new
stride. If this ratio = 2, stimes = 1. If this
ratio = 1/2, stimes = -1. Otherwise,
stimes = 0. The ratio calculation is
implemented by two comparators and a
decoder. The two comparators compare
the new stride with the old stride shifted

Alexandria Engineering Journal, Vol. 38, No. 6, November 1999

can be one of the following:

1. init: When a new entry is inserted in
the RPT, or when a steady reference
deviates from its steadiness.

2. tramsientl: When the stride of the
(init) state is incorrect, so the system is
not sure whether the memory access
pattern of this instruction is a constant
stride, linear stride or irregular.

3. transient2: When the stride of the
(transientl) state is incorrect, so the
system is not sure whether the memory
access pattern of this instruction is a
linear stride or irregular.

4. steady: The prediction is stable
(stride is either O or constant or linear
with stimes 1 or -1).

5. no_pred: No prediction is made
because three successive guesses were
incorrect.

A prefetch of data is triggered when an
address is reached that has a
corresponding entry in the RPT. First,
prev_addr is set to the last referenced
address. The addresses to be prefetched
are then calculated as follows:

1. If stimes = 0, and state # no_pred:

the address to be prefetched = prev_addr
+ stride

2. If stimes = 1 or -1 and state =
no_pred:

the addresses to be prefetched =
prev_addr * (stride shifted in the
direction of stimes)

and the new stride is equal to stride * 2
(stride / 2) if stimhes = 1 (-1).

3. If state = no_pred, no data is
prefetched.

The state transition diagram of this
scheme is shown in Figure 1. A simple
hardware block diagram for the
implementation of this scheme is shown
in Figure 2.

B 221

RCL I

ALAMELDEEN ani-ABOU-HADEED

Correct

GADY

@
N

Incorrect
Incorrect Incorrect
(Update Stride) ~ COTeet Comyect (Update Stride
(Updatd Stride) and Stimes)
TRANSIE- Vincorrect and Stimes < 1 or -1 NO-
_ Nnj (Update Stride pnd Stimes) PRED
Correct

l'ncom'ct and Ticotact
Stfmes p 4 o] (Updaté Stride
(Update Stride and Slimes)

and S}imes)

TRANSIE-

NT2

1
prefetch address
(stimes'= 0 and

state <>

no_pred)

new stride

________ > prefetch both
addresses
, (stimes =1 or -1
;i and state <
e ——— - - - - - > no_pred)
.
o=
|
L
shift
register e :
|
shiift
direction
1
)
1
1041 A
1o-H—»
01 (-1) :
by 1 s stimes
D cap 00-46)—>
)

A block diagram for implementing linear-stride pre fetching. The solid lines are activated first then the

prev_addr e
effective :I o
address =
Figure 2
dotted lines.
Example

Assume that address 100 in a certain
program references data of the following
addresses respectively: 256, 128, 192, 160,
156, 154, 155. Table 1 shows the
values in the RPT entry of tag=100, and the

144, 152,

B 222

prefetched address(es) (in the col
Prefetches) corresponding to each referenc
address (in the column Reference). It hast
be noted that most referenced addresses
prefetched before being actually referenced.

Alexandria Engineering Journal, Vol. 38, No. 6, November 1999

' Some Additions to Hardware-Based Data Prefetching

Table 1 Contents of the RPT entry in the example

Reference prev_addr stride Stimes new state prefetches

256 - 0 0 init -

128 256 -128 0] transientl 9]

192 128 54 -1 ransient2 224,160
160 192 -32 -1 steadv 176, 144
144 160 -16 -1 steady 152,136
132 144 8 -1 steadv 136. 148
136 152 4 -1 steady) 138, 154
134 136 -2 -1 steadv 153,155
133 154 i -1 steady -

'OMPARISON BETWEEN THE BASIC AND
’ MODIFIED SCHEMES

xtra hardware

- The modified scheme requires the
llowing additions to the basic scheme
dware. An extra bit for the state is
eded, due to the added state. Extra two
its for the stimes field are also required in
ach RPT Entry. An adder and a subtractor
required to calculate the addresses to be
fetched. A shift register that can shift
ither to the left or to the right is also

The algorithm of simulation is as follows:

needed, as well as two comparators and a
decoder. The connections to all stride and
stimes fields are added as required.

Simulation of the Basic and Modified
Schemes '

Reference patterns were extracted from
some of the most famous application
programs that use array references. The
simulation program reads these memory
references and simulates the action of the
basic and modified schemes.

UT Parameters:
- Memory Reference Array (R). Each entry
contains the program address (addr) and the
referenced address (RefAddr)
- number of references (nref)
-method : 1 for Basic and 2 for modified scheme.
PUT Parameters :
- nfound : number of entries found in Cache
- nnotfound: number of references that are not
found in Cache
- npref : number of Cache prefetches triggered.
|PROCEDURE :
nfound := 0;
nnotfound := 0;
npref ;= 0;
InitializeCache;
InitializeRPT;
Fori:= 1 to niref do
a. RefAddr := R[i].RefAddr;)
b. if RefAddr = 0 {Program references ended}
then begin
InitializeCache;
InitializeRPT;
end
else begi
addr := Rli].addr;
If AddrIinCache {addr) / i
then begin {address is found in cache}
inc (nfound);
UpdateRPT (RefAddr, addr, npref,
true , method);
end {Address is in cache}
else begin {address is not found in cache}
inc (nnotfound};
FetchToCache (addr);
UpdateRPT (RefAddr, addr, npref,
false , method);
end; {Address is not in cache}
end;

Alexandria Engineering Journal, Vol. 38, No. 6, November 1999

B 223

ALAMELDEEN and ABOU-HADEED

The function (AddrIinCache
?eferf;:ce address to determine W)h<’ect;lf1§1eecrkistj i:
in € cache or not.
(FetchToCache) fetches da;I:1 eat par os:;itl;;x:
address from memory to cache. The function
UpdateRPT operates exactly as the previous
state transition diagram.
Reference patte
the follonis pfogr a::: were extracted from
. Bubble sort (array size = 50)
. Insertion sort (array size = 100)
Shell sort (array size = 100)
Quick sort (array size = 100)
Quick sort (array size = 200)
Merge sort (array size = 100)
Merge sort (array size = 200)
Heap sort (array size = 100)
9. Heap sort (array size = 200)
10. Matrix multiplication (size 50x50)

Assuming that the prefetched block size =]
array element, the simulation results are
shown in table 2.

°°\10‘014>wto»_-

Table 2 Simulation results of some programs

Cache Hit Rate Number of Prefetches
Program o
0)

Basic | Modified Basic Modified
1 99.96 99.96 49 49
2 99.96 99.96 98 98
3 99.84 99.84 117 1Y7
4 99.82 99.82 103 104
) 99.92 99.92 205 204
6 97.72 97.76 131 153
7 98.05 98.15 306 315
8 99.89 99.89 99 103
9 99.95 99.95 198 201
10 96.00 96.00 127394 127594

It has to be noted that for the programs
that have irregular memory access patterns
(merge sort for example), the modified
scheme provided slightly better results.

For the binary search program, which
exhibits the most benefits, the results are
summarized in Figures 3 and 4 and Table 3.
Figure 3 shows obviously that the modified
scheme provides very much better
performance. Figure 4 shows that cache hit
rate improves with the increase in the
prefetched Dblock size. This is because
fetching a bigger block means more of the
adjacent data being fetched and less

B 224 Alexandria Engineering Journal, Vol. 38, No. 6, November 1999

prefetches required. Table 3 shows t
betv&feen the number of prefetchd
modified and basic schemes. [t in
that the modified scheme includes
more prefetches than the basic s
However, many of these ¢
prefetches are correct and this s
performance gain.]

Cache Hit Rate Vs.

Array Size

@

@ 60~ 7 .

5‘_:"

s “nm B

<

i

[&]
06— o o
g & g 3

Array Size

Figure 3 Cache hit rate vs. array size for binary
search (prefetched block size =1 array

element)

Cache Hit Rate Vs.
Prefetched Block Size
8

@
g3 60 []
0140
0 =
©F 2 .
Ov
1 2

Prefetched Block Size (in units of
array element size)

Figure 4 Cache hit rate Vs. prefetched block size for
binary search (arrayv size = 1000)

Table 3 Ratio between the number of prefetches in th
basic and modified schemes for Binarv Sear

Program Modified : Basic

Size =100, block=1 10.98
Size =100, block=2 9.18

Size =100, block=4 6.70

Size =128, block=1 14.30
Size =1000, block=1 12.85
Size =1000, block=2 23.21
Size =1000, block=4 21.44
Size =1024, block=1 26.00
Size =8000, block=1 41.69
Size =8000, block=2 37.88
Size =8000, block=4 37.70
Size =8192, block=1 38.00

CONCLUSICNS

Preliminary results show that for all the
gperimented programs, the modified
theme do not reduce the cache hit rate,
id for most of them, it increases the
umber of cache prefetches, getting many
ditional correct prefetches. When the
efetched block size increases, the number
prefetches decreases and the cache hit
fe increases.

In programs that exhibit a large number
linear strides of constants 2 and/or 1/2
as applications using the binary
arch), the modified scheme is much better
m the basic one. In such programs, the
posed modification is cost-effective.

ture Extensions

This work needs to be extended by
cting a better simulation model for
e-by-cycle operation of processors and
forming a thorough analysis of the
dified scheme based on some realistic
chmarks. The lookahead and correlated
eme and their corresponding modified
mes also need to be further studied.

_ REFERENCES

n-Fu Chen and Jean-Loup Baer,
flective Hardware-Based Data
efetching for High-Performance

Some Additions to Hardware-Based Data Prefetching

Processors”, IEEE Transactions on
Computers, Vol. 44, No. 5, pp. 609-623,
(1995).

2. P. Vander Wiel Steven and David J. Lilja,
“When Caches Aren’t Enough: Data
Prefetching Techniques”, IEEE Computer,
Vol. 30 pp. 23-30, July (1997).

3. William Y. Chen, Scott A. Mahlke, Pohua
P. Chang and Wen-Mei W. Hwu, “Data
Access Microarchitectures for Superscalar
Processors With Compiler-Assisted Data
Prefetching”, Proc. 24th Annual
International Symp. Microarchitecture,
pp. 69-73, November (1991).

4. T. Mowry, M. S. Lam and A. Gupta,
“Design and Evaluation of a Compiler
Algorithm for Prefetching”, Proc. Fifth
International Conf. Architectural Support
for Programming Languages and
Operating Systems, pp. 62-73, (1992).

5. Tien-Fu Chen and Jean-Loup Baer,
“Reducing Memory Latency Via Non-
Blocking and Prefetching Caches”, Proc.
Fifth International Conf. Architectural

Support for Programming Languages and
Operating Systems, pp. 51-61, (1992).

Received August 13. 1999
Accepted September 18. 1999

3L 5 6aa 0l UL eI G b ALY e
i Agnﬁf\;\:\ijdgﬂlelcgk .
Ao, Aadls - IV Saall asalall S A

g:.’ﬁ-j\da.’u\.o

g (L) gl Sy A 3 501 3 DU g Jlest B3 ol o UL eedt s Py

hE 2 o & SUYL el QDL (SB1 pluseat g sl g) a0 UL STl B dake e
S L UL Gl 1 ol 0 WD 13 gy U 2 gl B e B Bt e
""QU’J‘J Ot s {4 g @y U ~Su‘ﬂtyjs\ BUT 00 B G i s Sdle g clgm B
S et e i) gt Jad Blal s o 1 pudy g i 8 gl OS¢ g Mg e s gl
s Lghly ot YAl 25T 29 ¥\ Y 5T Y Jtag gl ol gy ol Jutas i 6 0
u)l_ad\um;\f\(.uj peld Aot Ol 1 587 1508 (s e G Bkl st 1) 1
b pp S Lk F) g

Alexandria Engineering Journal, Vol. 38, No. 8, November 1999 B 225

