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ABSTRACT

Through the Global Positioning System (GPS), precise orientation
and positioning are the major device for visualizing spatial motion of
the distributed visual satellites in the sky. The optimum geodetic
position of an antenna, suitable for observing a movable or
geostationary satellite from a point located on the triaxial ellipsoidal
- earth, is determined herein. The mathematical treatment presented
-here takes into consideration the equatorial ellipticity (i.e. the
earth’s triaxiality). The solution depends exclusively on the
combination of the advanced relations of the differential geometry
with the basics of geodesy. In this manner two approaches are
developed herein to extract the orientation elements. Firstly, the
necessary formulae are accomplished by applying the basics of the
differential geometry to the triaxial ellipsoidal earth. Secondary, the
geometric characteristics of the deduced formulae are checked
those based on the transformation matrix between the geodetic and
local geodetic coordinate systems. A comparison between the
present results and those previously based on the spherical earth is
introduced. The validity of the present techniques is illustrated with
numerical applications. @ When very precise pointing to
communication satellites and other space objects is dictated, the
correction of the slight deviations should be taken into
consideration. These deviations will cause very significant errors if
high gain antennas or electro-optical devices such as lasers are
used.

Keywords: Differential geometry, Triaxial ellipsoid, Satellite orbit,
Transformation matrix.

INTRODUCTION

rientation elements of an antennato a

geostationary or movable

communication satellite are the main .

requirement for an ideal observation. Precise
values of the azimuth and altitude of the
satellite are considered extensive tasks of
the geodesy. The solutions of such
orientation problems were previously
introduced but they were based on the
spherical datum of the earth [1]. Obviously,
the spherical datum was chosen to avoid the
complexity of the mathematical analysis due
to the oblatity or triaxiality of the precise
datum of the actual earth. To avoid the
uncertainty of results due to excluding the
oblatity of the earth, some corrections have
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to be added to the final spherical result [1].

The current work seems to be more

consistent since it abandons the ambiguity
due to the earth’s figure and the satellite’s

_ fixed position. The triaxiality of the datum is

considered herein for the reference to match

the earth, (i.e. triaxial ellipsoidal), [2-4].

Conventionally, the observed satellite is
located at a general position, not fixed at the
equatorial plane. The satellite is considered
to move along normal orbit [S]. The actual
path of the satellite along a normal orbit is
an ellipse located on the orbital plane,
which is fixed in space. The focal point of
the orbital ellipse is at the center of the
earth. The geometric characteristics of the
triaxial datum and satellite orbit are the
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main devices to develop the generalized
exact orientation elements. The present
paper offers a precise model valid to the
satellite communications with the high gain
antennas or electro-optical devices such as
lasers. :

POSITION VECTOR OF THE EARTH
STATION AND MOVABLE SATELLITE
Geometric Representation of the Earth

Station

The position vector (.. ¢) of a current point
P(X.Y.Z)on the surface of the ellipsoidal
reference system shown in Figure 1 is [2]:

r(h, ¢) = r(X,Y,2)

Figure 1 Position vector of an ellipsoidal point p

where:

b2 cos rcote

X= :
52 2 ) 2!
[sin? .+ == cos? 2]2 [b? cot? - c2(sin? /. - = cos? 4)]2
a? a?
V= b2 sin r.cot
i b2 3 b? >
(sin? 7.~ - cos? 7)2 [b? cot? @ - c2(sin? 7. - 2= cos? )]
a? a?
B2 L
c?[sin?  + —2-(:052 72
Z= =

1

, 5 1
[b? cot? @ - c(sin® i - b—2 cos? 1)]2
&

(1)

here a.b and ¢ are the semi axes lengths of
the triaxial ellipsoid; a > b > ¢, while/..¢ are
the .geegraphic coordinates of the current
point on the surface, (Figurel).

Practically, due :to the irregularity of
the surface of the earth, a geodetic height i,
may be existing at the surface point P. The
actual coordinates of the earth station
related to position Pare the geodetic
coordinates ~  (\,.1,.Z;) of  point
P(Xp.Yp.Zp), such that:

X)) (A0 +h/@%G))

Y =4 L +h/(°Gp)] @
Z, | \Zpl +h /(€G]
where:
\': I,‘: Z: 1_
Gp = ;z_f+b_}"‘+_f]2 ()

Geometric Characteristics of the Satellite
Orbit.

The orbital motion of satellite is a result
of the earth's gravitational attraction and
some other forces acting on the satellite
such as the attraction of the sun and the
moon in addition to the pressure on the
satellites caused by impacting solar
radiation particles [5]. Mathematically, the
equations of motions for satellite are
differential  equations that are solved by
numerical integration over time. The
integration begins with initial conditions,

- such as the position and velocity of the

satellite at some initial epoch [5, 6]. To
simplify attempts to study satellite motion,
we study the so-called normal orbits. Fora
normal orbit, a satellite moves along the
actual path in an orbital plane fixed in
space. In the mathematical strict sense, the
actual path [5] of the satellite in the orbital
plane is an ellipse as shown in Figure 2.
The focal point of the orbital ellipse is fixed

- at the center of the earth, (Figure 3).
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Figure 2 Orientation elements of satellite orbit
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Figure 3 Geometric characteristics of the satellite orbit =~ *

Six Keplerian elements are often used to
describe the position of satellite in space. -

These elements [5-7] are, as shown in
Figures 2, 3, the semi major axis a, the
eccentricity eof the elliptic orbit, the
inclination i of the orbital plane with
respect to the earth’s equatorial plane, the
right ascension of the ascending node O of
the orbit, the argument of the perigee ¢ and
the eccentric anomaly E . The two elements
a and e define the size of the orbital plane

while the three elements i , Q and & define

the position and slope of the orbital plane in
space with respect to the earth's axes. The

eccentric anomaly £ defines the position of
the satellite in its orbit at certain epoch. The

eccentric anomaly Eis also defined
geometrically as a function of the true

anomaly f as shown in Figure 3.
The positional coordinates
Xs.YgandZg of a satellite S, referred to the

geocentric reference axes, are:

X 1 ls

Ys {=[Rns (@)
zsf 0
where
[®]= [9‘33(—52)‘31‘ (—f)‘J?;(—cf>)] | (5)
and

e SRR

.M](.—zf.)andﬁf{s(—ﬁ\ are the well known

rotation matrices defined by:

1 0 0

Ry (=) = |0 cos(—i) sin(~i) (6)
= sin(—i) cos(—i)

[ cos( —f)) sin(—f)) 0
R3(-Q) =| —sin(-Q) cos(-) 0 (7)
0 0 1

The matrix R;(-®) can be accomplished by

analogy from Equation 7 when Q is
replaced with o .

The local satellite's coordinates Z;.ng
referred to the orbital plane's axes
Z and nas shown in Figure3 are expressed

as [7]:

Zs =afcos(E)-é}
2l & 2 L (8)
Ng =asin(E)y1-(e)”

Alexandria Engineering Journal, Vol. 38, No. 6, November 1999 D 133



FARAG and SHEBL

It has to be noted that the eccentric
anomaly F is evaluated by iteration from as

[7):

E =\ +ésin(E) 9)

where 1/ is the mean anomaly expressed
by:

”‘}

(a

M= (1-T) (10)

in which W is the earth's gravitational
constant and (r-7)is the difference (in

seconds) between the time of perigee
passage tand the time of satellite passage T
at a certain epoch.

Substituting from Equations 6, 7 into
4, 5 one can find:

X a{cos(Q) cos(®) — sin(@) sin(Q) cos(i )} {cosE) ¢}
- a{cos(CY) sin(®) +cos(®) sin(C) cos( )} sin(E Wi-(e)°

a$ sin(f!) cos(®)+sin(®) cos(f)) cos(i)} {cos(l;: )—e}

+a{~sin(Q)sin(@) +cos(®) costC) cos(i )} sin(E)y 1 - (¢)°

a {s'm(f )sinkm)} § cosE) ~ e}

Zs + afsinG ) cos@)} sin(E)y 1 —(8)*

(11)

these formulas show the geocentric
coordinates of the satellite expressed as
functions of the six Keplerian elements.

FORMULATION OF THE PROBLEM
Let the dish antenna be located on the
earth’s surfaces at a position
P(Xp.Tp.Zp)and the instantaneous position
of the satellite is S(\';.Ys.Z) as in Figure 4.
Furthermore, assume that I[1[w.w*] denotes
the plane which is specified by two parallel
lines w,w* where w is the normal to the
earth at P and w* passes through the
satellite S. Plane [T intersects the elliptic
equator at the sub-satellite £ . The distance
PS is the range of the object S (distance
from satellite to the antenna P). The geodetic
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azimuth f is the angle between the
meridian g, through 7 and the surface curve

g which passes though p and E and is
contained in the plane II. Sometimes,ifa
geodetic height h, is considered at point P,

the geodetic azimuth [ can be definedas

. the angle between two lines passing through

the corresponding terrestrial point and
parallel to the tangents of the two curves
gyand gat point P . The geodetic vertical

angle o (i.e. geodetic altitude) of satellite is
the angle between the observation line and
the horizon plane (tangent plane) to the
surface through point P. The main objective
is to determine the azimuth [ and the

vertical angle o .

GEOMETRICAL APPROACH FOR
DERIVING THE ORIENTATION ELEMENTS
The azimuth f is achieved firstly by

means of the so-called fundamental
magnitudes of the first order of the surface.
It has to be noted that any curve g, on the

surface may be expressed as a function of
the curvilinear coordinates 7.,.¢ . If the

function f;(7.,.9,)=0 is used to represent
the meridian g, which passes through point
P, we can express:

S1Gy. @) =7 —2p =0 (12)

so, differentiation of Equation 12 with
respect to @, , yields

it ) (13)
ap, {
On the other hand, the surface curve g,

shown in Figure 4, .is the curve of
intersection of the plane and the surface.

_The equation of plane is:

X +mY +nZ -R=0 (14)
where:

R=(Xp-mlp+nZp
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The magnitudes ¢, m and n are the direction ratios of the normal to the plane IT so that:

¥
£ =pps —5—Ops b[;:

i
M =—Cpg —4 +Epg — (15)

The magnitudes ep;.ppg and o,g (direction ratios of line PS) are:

Eps = { a{cos(Q) cos(®) —sin(®) sin(€2) cos(i ) } {cos( £) - &}

— a{cos(Q) sin() +cos(d) sin(CY) cos(i )}sin(E Wl- é)° } -\ .
P = { a{sin(Q) cos(®) + sin(d) cos(€2) cos(i )Hcos(E) - é}

+a{~sin(Q) sin(®) + cos($) cos(€) cos(/ )} sin(£)y/1 - (6)° } o

8 :{ a{sin(7 )sin(®)} {cos(E) — &} + é{sin(f)cos(é))}sin(é)m } -Zp

Figure 4 Location of the dish anttena
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The function f(%..p)=0 of the surface curve a'/ _(ﬁ)/ (1)
gcan be obtained by the substitution of
Equation 1 of the surface into Equation 14
of the plane I1. Thus where:
2
5t Ez =nc2 [sin2 7.+ 9—2—0052 7 sec? ¢o-R c?
f(r.@)=b"(£c0s .. — msin A)+ nc [sin = K——:—cos: »]tan @ a
b 0 b2 ! b? 2
~R[6% -c(sin? 7.~ —-cos® A)tan® @|3[sin* 7.+ —cos7 7] =0 [sin2 8 +—2cos2 )2 tangsec’ ¢ (18)
a” a*®
a
P 2 2 s BRI 2 =
[b® +c*(sin® 7. + = cos” A)tan ]2
The differentiation of the function f(r.¢)=0 a
is: q
an
df = Cf di+2 f ~dg=0
hence:
b2 b2 S b2
X 5 (1-=5)tanesin2y. [b2 +c2(sin? .. + — cos? 7.)tan? ¢} 2[(1 - —)sin27 ]
cf 2 c a% .. - R 2 =2
— = —{/sin~ + mcos 2)b” + = —
- ’ 2, B2 e 2. . b2 5 =
: - 2 312 - )
[sin© 72+ 5 cos 7] [sin“ 7. + g cos“ 7] (19)
b* b‘ | 3 |
— 2 sin2:[sin? 7. + 2—cos? 4]2 tan?
R o2 [a a2)31n2/.][sm /,+a2 cos” 1]4 tan“ ¢
2 b 2 1
b2 +c?(sin® 2. + — )—<:os2 A)tan? ]2
a2
Azimuth fis the angle between the two
curves g,and g, which are intersecting at E=ri-ri. F=rirg. G=re-re (21)
point P(rp.pp). This angle is generally ¥ =
defined  [8,9] by the following geometric where r;. and ro are the first partial
“relation: derivatives of the position vector of the
current point (X, Y, Z), defined in the
iy 1 N Ory | En e relations given by equation 1, with respect
cos = op, e op, @ to » and ¢ respectively. Thus
CF. - V% 3
\/E(i;)’ Y e B ‘/E(-‘;i)- +2FZ 46 i aivin
(e, C = 1 X
' “’* “’ o ra(h @) = (. =—. =) (22)
(20) CL. Gk €EF
where
Wher%- E.Fand G are the mndmentﬂ 2 b* tan B s00? & —c* tan® q {sin 4.~ b—;cos: ;V)“;b_;vm:;_)]
magnitudes of the first order, calculated at A= o & .
point P(%,.p,) on the ellipsoidal surface. 3 [tan* ‘/-—f—:]E[bz - &% tan® @(sin® 7.~ “cos” 1)} \
/4 a
These magnitudes are given in Reference 8 (23) |
as:
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o b colk[z—icoscc‘?.'c‘ tan” @isin® & -i«i cos’ }J[Zf~ cosec’ - (- :—i)] G(Q s F(C;f.)
2 2 3 Cr. o
3 [l—%cm‘ 7‘]%[17: - c* tan? @isin’ 7. ~-b—eos e cosf = 7 - E_/(fp o (30)
(24) G| E(=) - 2F (=== ) +G(= )
f20) ép O .
7.9 ) b2 2 b2 2 'l_ -
o7 ¢"b” cot” @cos7.sin 7-(1—;2—)[sin.‘ 7.+—cos” K] 2 The vertical angle © 1is the angle
oo 3 . 3 between the tangent plane through Pand
the observation line /S . The observation line
('2 5 is directed from the terrestrial point
- ) I(X,.1,.2,) to a satellite S(V;.15.Zy), Figure
S . The direction cosines of the normal to the
av or & ellipsoid at P, are denoted by the symbols
ro(h.@) = (-— . —. =) (26) ¢,.m,.n, and given by [2] as:
w w w g
op Op g ?
— COS .. COS @
where P = _—az m
a _l_ “W Q > w )
.. b c tangsec” pcos” A [tan” A+ —]° b2 ’
[2Y = a’ (27) 3 [sin2 3, 40082 2]sing
P " 3 sin i cos @ 2
~ - - . b- 5, = e and Ny =
[6- +c¢” tan” @(sin~ /.+—:—cos‘/.)]- Q Q
L (31)
.. s B a2 Where
oF b c- tan(psec'cpcos‘».[l+—:—cot').]- 5 v
== a - (28) Q:J[sin:’}.ak—’—cos:}.]3+(I— —)?sin” hcos’ kcos’ @
T DI e I e 3 @
[67 +c” tan” @ (sin~ /.+a—:- cos” .)]- (32)
1 If the direction ratios of the observation line
¢ b cotecosecp[sin” ?-+é§0653 SE IS are denoted by €5, p;s , 6,5 , the vertical
24 = angle o will be:

= a (29)

X ~

A s s, .. bT > £y &5 +m,prs +1,05s
[b7cot™ @+c(sin”~ 2~ +—cos~ )]
2

1
[(er5)” +(pss)” +(o55) )

12w

® =sin"’ (33)

Substitution of Equations 12, 17 into Whete

Equation 20, gives:

&5 ={ a{cos(€2) cos(6) — sin(é) sin(€2) cos(7 )} {cos( ) - &}
(34)

-af cos(f)) sin() +cos(®) sin(fl) cos(i)} sin(lg')‘/l ~(e)" } - [-\'P (1+ hé )J
a~Gp

Pig = { a{sin(€Y) cos(d) + sin() cos(€2) cos(i )Hcos(E) - &}
(39)

+[z-{~sin(f2)sin(c?))+cos(6>)cos(f))cos(f)}sin(E)‘/l—(é): }—[)'P(H ﬁ’ )J
a-GP
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o5 =4 afsin(i)sin(®)}{cos(E)—e}+ a{sin(i)cos(d)}sin(E)y1-(e)" f‘\:lp(l"' é‘ )} (36)

The terrestrial coordinate system [10, 11]
is utilized herein to verify the validity of the
previously accomplished formulae. The
mutual transformation between the local
geocentric terrestrial coordinate system
x.v.z and the local coordinate system
u.v.w , Figure 5, is our device for satisfying
the validity of the last method based on the
conception of the differential geometry.

The reference axes u.vandw of the local

-coordinates system are considered at the

f.=—sSINQCOSA. m,=-sin@sink, n, =cosQ

. s b . s
szl =1 - —5)cos™ 2.sin” @]
a

. b T T
cos A[— + (1 — —)sin” Asin” @]
a- a-

]

a Gp
origin I Here W is the normal to the
surface  through the terrestrial point
1(X,.Y,.Z,) while v is parallel to the tangent
to meridian at P(\,.1,.Z,). Therefore u is

taken in a direction that completes the left-
handed system of coordinates u.vandw .The
direction cosines [, .m..n,and ¢t m,.n, of
‘the two directions v and 1 are respectively
given by [2] as:

~~~~~

Y {

(37)

(1 = —)sin 27.s1in 2@
-

Fo=— .m, =

u 0 > u

Figure 5 Local coordinates svstem

The geocentric coordinates (X.}.Z) can
be transformed to the local geodetic

0 -5 40

coordinates (L.]".H") according to Reference
11 as follows:

5 X-1
1) =[n] )'~)',1 (38)
W Z—LJ

where [ﬁ] is a rotation matrix defined by: ’

LL g n
v

Al .1 (39)

A} v

1

[]=

t
€., n

w nM

Applying the satellite position S(.\.I;.Z)
on the transformation formulae given by
Equation 38, one can achieve the local
geodetic  coordinates of the satellite
S(U.J5. M) such that:

isl =[r] rii " (40)
| o)

0 s
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Then, the horizontal azimuth and the
vertical angle © are:

r'
p=cos™ —=L—e (41)
JO& 155
i
o ssin™ e (42)

Us +15 +05

It has to be noted that, substitution of
Equations 29, 30 into 32 proves that the
vertical angles calculated from Equation 26
are identical to those calculated from
Equation 32. Moreover, a numerical study
will be made to \enfy the reliability of the
deuced equations.

PRACTICAL APPLICATIONS
Orientation Elements of an Antenna Di-
rected from Cairo to a Moveable Satellite

Particularly, for an antenna located at a
given geodetic position in Cairo
P(31.33333°E.2985° \'): h; =0, one can find a
particular formulation for calculating the
orientation elements B..o. from Cairo as
functions of satellite position. The Keplenan
elements of the orbit are [7]:

4=26561740.4 m. ¢=0.0041338, / =63.25 ,
Q=148.29 , 6= -23.93 , T=46154.1059
sec.

Introducing the given data of the position of
antenna collected with the data of the path
of the satellite into Equations 3land 32 and
doing the necessary substitutions, one can
get: '

180 —0.501880078(10) " cos(£)+0.26082760(10)® sin(E) +39204.92473

i.

where:

. _180 . [ ~0.1058516K10)° cos(E)~0.189327284210) —0.63290666(10)] cos(£) \!(

V& i,

R, =0.5934803910)" cos > (£) —0.50989442510)" cos(£) - 0.7019294410)™* sin > (£)
+0.1129227410)" sin(E) - 0.4008119510)** cos(E) sin(E) + 0.1123799410)"!

R, =0.7055260X10)"* cos (E) - 0.1288989310)'° cos(£) - 0.7055139710)"* sin?(£)
+0.25094527(10)™ sin(£) —100000cos(E) sin(E) +0.40068322(10)*

The  eccentric anomaly[? defines the
position of the satellite in its orbit at certain

epoch. The earth's oravitational constant i’
is usually taken 3986005 (10 m3/sec2, 6,
10]. Then substitution of the magnitude of
W on Equations 9 and 10, yields:

21682838 £ —0.0041338 sin(£) = 1 —46154.1059

(44)
Where ris the time (in seconds) of perigee
passage of satellite.
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Numerical Applications

A set of numerical applications is
analyzed here for comparing the orientation
elements based on the spherical and triaxial
ellipsoidal reference surfaces. The spherical
datum is of 6378137 m radius [10] while the
ellipsoidal dimensions are a=6378137 m,
b=(1-1/93800)xa, =(1-1/297.78)xa [2]. The
negative vertical angle means that the
observed satellite is invisible.

Application 1

Assuming that a single geostationary
satellite located at S(42200000m ,0, 0) to be
observed via a group of antennas located
along the reference meridian (2=0) but at
different positive  geodetic  latitudes
separated by increments of 10°.

The present results are compared with
those based on spherical datum in
Reference 1. The vertical angles based on
the spherical and ellipsoidal surfaces are
calculated and listed in Table 1. Because the
differences in the equatorial dimensions of
the spherical and ellipsoidal surfaces are
very small, the vertical angles based on both
datums are slightly deviated. Excluding this
small deviation is not accurate if a very
precise pointing to a communication
satellite is detected via either high gain
antennas or electro-optical device such as

laser. The results conclude that, the obsrver
near latitude 81° shows all true satellites
closed to the local horizon. The true satellite
of latitude 81° is visible with respect to the
ellipsoidal model, but it is not visible with
respect to the spherical model. All satellites
of latitudes ranging from 82° to 90° are
invisible.
Application 2

Many positions of Geostationary satellite
located at the equatorial plane with constant
range OS= 42200000 m are observed from

the earth station P(r.p =0.¢, =45\). The
pointing angles based on the spherical and
ellipsoidal surfaces are calculated for
different positions for the observed satellite.
The azimuth and vertical angle are
calculated according to the longitude 7. of
the meridional plane on which the satellite
is observed. As shown in Table 2, the results
are calculated for satellite longitudes i
ranging from O to -10°. The results show
that the observed satellite at a position of
longitude 7. equal to either 80°, 90°, -90°
or -80° is invisible.

Table 1 Orientation angles of a point antenna to geostationarv satellite for different earth station latitudes with zero

longitude
Ellipsoidal Observation Spherical Observation [1]
Latitude
Azimuth Vertical Azimuth Vertical
10 180 78.245476 180 78.2386
20 180 66.573383 180 66.5612
30 180 . 55.058952 -+ 180 55.0434
40 180 43.761930 180 - | 43.7459
30 180 32.725102 180 32.7105
60 180 21.972714 180 21.96035
70 180 11.512381 180 11.5023
80 180 01.338109 180 01.3291
81 180 00.335863 180 negative
82 180 negative 180 negative
90 180 negative 180 negative
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Table 2 Orientation angles of pbint Antenna to Different positions of Geostationary Satellite'of Constant Range

Orientation of Point Antenna on the Triaxial Ellipsoidal Earth to a Communication Satellite

Satellite Ellipsoidal Observation Spherical Observation [ 1 ]
longitude Azimuth Vertical Azimuth Vertical
0 180 38.2090577 180 38.1935
10 165.998191 37.2554924 165.9981 37.2411
20 152.745866 | 34.5138803 152.7637 34.5024
30 140.745203 | 30.2861361 140.7685 30.2785
40 130.094274 24.9421720 130.1207 24.9386
30 120.653970 18.8281881 120.6821 18.8282
60 112.178865 12.2271330 112.2077 12.2299
79 104.403726 | 5.35596917 104.4328 3.3605
80 - negative -- negative
90 - negative -- negative
-90 -- negative -~ negative
-80 -- negative - negative
-70 255.59627 5.3559617 255.5627 35.3605
-60 247.821134 12.2271530 247.9723 12.2299
-50 239.346029 18.8281881 239.3179 18.8282
-40 229.905725 24.9421720 229.8792 24.9386
-30 219.254796 30.2861361 219.2315 30.27835
-20 207.254133 | 34.5138803 207.2363 34.5024
-10 194.011733 37.2554924 194.0019 38.19335
CONCLUSION due to atmospheric refraction, line of sight

The classical approaches for handling

the orientation elements for geostationary
and movable satellite lack the critical and
precise specification of results. This is
because the like studies are devoted to the
spherical or spheroidal reference systems
. and fixing the satellite position at the
equatorial plane. The present study offers a
more precise model for observing a
communication satellite. [t takes into
account the equatorial ellipticity and the
spatial mobility of the satellite’s position.
The model is convenient not only for the
ellipsoidal earth but also for many
extraterrestrial bodies of our solar system
which may be modeled as triaxial ellipsoidal
surface.

The effect of the insignificant errors
due to equatorial ellipticity should be taken
into  consideration when very precise
pointing to communication satellites and
other space objects is dictated, especially if
high gain antennas or electro-optical devices
such as lasers are used.

The  communication through small
vertical angles are sensitive to receiver noise

obstructions, single reflections with ground
or nearby structures and other factors. All
possible positive values of vertical angles
offer the approximate range of latitude or
longitude that an earth station must have in
order to communicate successfully with a
satellite parked or moved in fixed orbit.
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