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ABSTRACT

In this paper, the freedom of choice of the zero-order solution in the
perturbative analysis of harmonic oscillators that are perturbed by a
nonlinear perturbation and a linear damping is investigated. The
study is within the framework of the method of normal forms in the
case of ~unforced damped Duffing’s equation. Choices discussed
here are the same as those discussed by Kahn [1] for the undamped
case. It is demonstrated that because of the effect of damping, the
number of free terms in each order is increased. Most of the free
coefficient in most of the choices have to be presented as complex

‘numbers. It is also found that the amplitude of the zero-order
solution . decreases, .exponentially with time and .its principal
‘argument or phase is also time dependent..

Keywords Nonlinear equations, Damped harmonic oscillators,
Perturbation method

INTRODUCTION Im* this paper, we study a few choices of

4 It is, known that many physical phenomena the zero-order term in the solution of a non-

in engineering and technologx are modeled i“iconsetrvative system described by -a simple

y  second-order nonlinear - d]fferentlal harmonic ¢ oscillator perturbed by small

equatmns% given by: IR polynomial nonlinearity and a sma]l linear
i TN damping,

X = Fo(x) + eF,(x,X). . (1) We used the method of normal forms.

- The latter--are” generated by’ the method of
Lie transformation [2-5] or by a direct Taylor
expansion [6-9]. The Lie :*transform
technique was introduced by Deprit [2] to
improve the technology of carrying out the

Where x is a dynamical variable, a-dot
means differentiation with respect to time t,
Fo(x) is the unperturbed part, € is a small

arameter andF,(x,X)is th rturbed part. A
p 1 (%, %) ¢ PEIIEE P perturbation theory. In Reference 2, it has

The zero-order solution is the one obtained been shown how to construct a generating
when the perturbed part is neglected. In function for a family of coordinate
many cases, this solution satisfies a linear
differential equation and is quite known.
Besides, any function that is guaranteed to
be within order o (g) of the required solution
for the duration of time over which one
wishes to solve the problem and satisfies all
other requirements imposed on the problem
is a possible zero-order solution. Meanwhile, can be very easily analysed. Since a non-

the higher order terms in the perturbative conservative system as the one studied in

expansion of the solution of the full this paper i ' . : .
e ., paper is not hamiltonian, the direct
equation are affected by the choice of the Taylor expansion is used to generate the

zero-order solution. normal forms. To show the effect of damping

transformations and their inverses for any
Hamiltonian system. The method and some
generalizations are reviewed by Nayfeh [10].
The Lie transform techniques turn out to be
elegant and flexible and although many of
the results are not new, the properties of an
adiabatic (slowly varying with time) motion
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on the possible choices of the zero-order
term and be able to compare our results
with those of other investigators [1, 11 and
12] who had not considered the effect of
damping, we studied the equation:

Frx+e(c +¥)=0 2)

which is the unforced damped Duffing’s
equation, where J is the damping coefficient.
The study of cases of nonlinear damping, or
damping of finite amplitude are left for
future work. The paper is organized as
follows:

In the next section, the normal form
expansion of the solution of Equation 2
through second order is presented. In the
following section we present its general zero-
order solution. Next a few choices of the
zero-order terms in the expansion and the
effect of damping on these choices are
discussed. .

NORMAL FORM EXPANSION OF THE
UNFORCED DAMPED DUFFING’S
EQUATION

Equation 2 can take another form usmg; :
the complex variable substitutien . . . ..

z=x+ix. -~ : ;54 {3)

Upon substituting from Equation 3 mto

Equation 7 yields:
g i =\3 . -
z.—:—iz—'g‘[(z-i-z) —4iG(z+2")] (4)

Where an asterisk means a complex
conjugate. First we write a direct series
expansion of z in the form:
z=u+Y e"T (u,u’) (5)

nz1

The zero-order term u will satisfy the
equation of the following general form:

U =—-u+ Y eU, (u,u) (6)
nzit

Where U, and Ts are related such that for all

n > lone has
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‘nonresonant terms in T, are then

U, = [zo-,Tn]+ fJn (7)

Where z, = -iu is the unperturbed part

the equation , the U_ are known term
computed from lower order contribution
and the (square) Lie bracket is given by:

[eo, Tl = 4T, + iu 2 i e ®
cu
The expansion Equation 6 becomes a
normal form if in every order one chooses Ty
such that U, include only resonant terms.
Then, the near identity transformation
Equation 5 is called a normalizing
transformation. The resonant terms
Equations 4 and 6 are those that have the
same phase as the linear term u. These are

monomials of the form u*?u™ and their
linear combinationsg. The coefficients of the

determined by the nonresonant components
of U,. By this method each T may have an
arbm'ary resqgaant contribution of the form
Fn(uu*)u. This is<hg¢cause the Lie bracket of
such’a resonant term yvanishes.-
The following are expressions.for. Ty and
Un for n=1,2 including the free terms:
T, = Lud .3 T
'T16 16 32 9)

iC - 2 at. 5
-;’-u +au’u’ +Bu

T, = 2 u5+(_15+iaju‘u'

1024 256 16
(69 9 5 43
+|—-"—a|u’u
512 16
( 21 3 Y o4l 1 s (10)
+ 10 D G e E |
1024 32 512
- L Ka) .2
& | e I e i
[16B+161' quu
+yuu ? L suty +/u——Bu
3 9 <5 3 ( 3 & *3
+|—B+—1l|u —_— —1Z
(16[3 ’IQSI'J *132P st ‘)u
3. . ]
[_]1 :___.luzu —-=Uu (11);
8 2
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e
U, =i — e, ST lasw? s (/,C_—ilE T T (12)
i 4 256 4 8

.. We assume the free terms in each Tn to
be of the same form as resonant terms of Un
for two reasons. First, in order to be able to
get the values of the free functions that
correspond to any imposed specified
conditions in the solution. Second, in order
to keep the number of recurred due terms in
Un+i-at a lower value. From Equation 11, it is
quite clear that there are two free terms in
T: namely ou?u’ and pu where each o of or 8
is a free coefficient. From Equation 12, these
two free terms inT,, have affected Uz. It can
be readily proved that Un+: is affected by free

. terms assumed in each of T1,T2,...Tn.

From Equation 12, we notice that there
are three free terms in -T2 . namely

viw’u"" ,du'u’ and Au, where v,8,A, each is
a free coefficient. It is worthwhile to mention
that Kahn et al [1] have studied the
unforced undamped Duffing’s equation and
found that there is only one free term in
each of Ti, T and T: of the form

o’u” Puu and = vu'u” respectively. Thus
the effect of damping is to increase the
number of free terms in each of Ta. They are

composed of all terms of the form ukulll*k,
k=0,1,2...n and not a single term of the form

u"'u"for each T, as it occurs in the
undanzped case.

We Dbelieve that when damping is
nonlinear or of finite value the nature and
number of free terms will consequently be
more sophisticated. For the present case of
linear damping, calculation of T: and Us
necessary for third order solution can be
readily found. However, we shall be satisfied
with solution of Equation 2 through

o(g”)only since the number of terms in Us

and Ts is expected to be much enlarged than
that of T2 and U.. The general zero-order

. solution # through 0o(g”) is shown in the
Afollowing section and those corresponding to

-~ certain choices of the free functions are

shown in the last section of the paper.
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GENERAL ZERO-ORDER SOLUTION
THROUGH o(g”)

Substituting from Equations 11 and 12
in Equation 6 we get:

3e 3P’ . o)
A . 1+(\§+ % +1aZe” [uu (13)
u=-i 3 u
of =3 Bl Y 5 . Z° 5 el
~€ +——|uu’ + 2 - =
B 256J 8 2

By writing # in a polar form as :
u = pexp(~if) (14)

Where p and ¢ are real functions of time t.
Substituting into Equation 13 we get:

1+ (38 3[3 +iole ]pz
8 (15)
=- u
2(—3& 51 ) 2 e
- —+ +=—g’ -—=
4 256 8 2

Equation 15 can be written as:
U = —i[R +ilju (16)

Where R and I are the real and imaginary
part of the bracket in R. H. S. of Equation
15. It is quite clear that the values of R and
I depend on the assigned values of the free

- functions o and p whether real or complex.

For the undamped case o and B were
assigned to be.real [1]. However, when
damping is considered, o and B may be of
complex nature as will be shown in the
following section.

From Equations 14, 15 and 16 we get:

22~ ¢
$= R—1+_§§_+_+§9r__-—a182 2

8 4
3o, \ (17)
-2 ra 25:'32‘34
and
. -eL (3 . . 30,
P=p1=p[ : +(§B,a'+a,:s‘Jp’+§a,s‘p‘] (18)

Where «,,a,,0,,B are the real and imaginary
part of o and f3 respectively.
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From Equations 17  and 18 one can

notice that, for the values of the free .

functions for Wwhich pvamshes p becomes

equal to its initial value p,and bgets a

constant value that can be interpreted as
fundamental frequency o.

POSSIBLE CHOICES OF THE FREE
FUNCTIONS
Of the infinitely possible choices of the
free functions some possible choices that
are of either physical or mathematical
interest are demonstrated.

No Free Functions
This is the usual choice a= = 0. Hence
from Equations 17 and 18 one can get:

p——&p (19)

and , '
C:E:J 38 . 51 . _ 20

cb (l+——8 + 2 f2368 p’ (20)

Putting = 01 in Equatxon 19 and 20 ylelds

p=0and c)=¢_( 3_€p;'_.:_’l_€ p) which are

8 256

identical to the results obtained by [1].

Meanwhile, integrating Equations 19 and 20
yields the results:

”

p=poexp(-e31) " oy (21)

andl R ‘
~ 3 , 5l 5 2 5

¢ = (9 +’8_§po 2567 ——=Po ) ~.((1"'38 )

t= = p,? exp(-eLt)
8
51

where p, and ¢, are the initial values of

=, exp(-26.1)

p and ¢ respectively.

From Equations 14 and 21 it can be
concluded that, for this case the amplitude
p of the zero-order solution u decreases with

time because of the dampmg _effect.

.. .Consequently from*Equation’ 22 we notice

that the phase ¢ of the zero-order solution

u depends on initial amplitude p, and
varies with time t.

Minimum Value of Uz
The choice of minimal normal form (M.

N. F) is the one in which all U,_, , are made

to vanish. Through second order for the
undamped case, Kahn [1] found that this

required one to choose a—%. It isclear

that because of the effect of damping , the
last term on the right hand side of Equation
12 can not be made equal to zero. However,
Uz can assume its minimal normal value
(M. N. V) given by:

U, w3 iu v(23)ﬂ
- 8

When - ks’
64

and p = %Qi (24)

... For this case the coefﬁcie‘nts .have the
particular values: ~

(;ég,(x ~0,B, =0and B, ~——g 285)

‘Upori’ substituting these values of
a,,a,,B and B, into Equations 17 and 18
and mtegranng them one.can obtain the
same relation as 1n Equation 21 for the
variation of p with respect to t- On the other
hand;. the variation of ¢ with respect to tis
given by a s1mpler relation as:

¢ (¢o —po)+
(26)

1 Cg 2 - 3 . 2 r
+ =g Jt.— ==p," expi{—eLt
(L4 Z-e%)t - 7po” exp(-oLt)
Simplified
Conditions
The simplest way for the implementation
of the initial conditions is by requiring that
these initial conditions are satisfied by the
zero-order term u alone. This makes:

Application of Initial

u(t =0) =p, exp( i9,) = X, + 1X0 ; (27)
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d implies that all higher-order terms in
e expansion must vanish at t=0. If the

initial conditions are such that X, =0, one
=, and 4)0 =0 (28)

for the initial conditions of p and ¢.
If we assign to o, ,a,,3, and B, the values of

-17
-6*2{ ,0, -2— and 718— C respectively, Equations

17 and 18 get their simplest form. By
integrating these forms and using of
Equation 28, the same relation Equation 21,
~again for the variation of p with respect to ¢
' can be obtained. Also, a much reduced
formula for the variation of ¢ with respect to
t than those of Equations 22 and 26 and is

given by:
o= (1+%—83)t (29)

A

From this equation, It is easy to notice
that the frequency © = d) for this particular

choice of free functions is not dependent on
initial amplitude po. =

Elimination of Frequency Componentvs‘ ‘
If we substitute Equation 14 . mto
Equation 9, it can be easily noticed that T

¢ which is the principal value of the
argument of the zero-order solution u and
two terms each of argument 3¢.

As for Tz, one can observe from Equation
10, that it contains two terms each of

argument 3¢ and six terms each of principal
argument ¢.

To eliminate the terms of principal
argument ¢ in T; and T2 one needs to have;
from Equation 9:

(_{E'HXJ 0 and [-——+Bj=

and from Equation 10:

contains four terms, each one is of argument

argument 5¢, four terms each one is of
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69 9 ) (~9 3, f‘;) 5
& 2 0, |[2p+=it-=q]+5=0
(512 T prgt M

and ",_—‘ =0
7 4[3

These requirements can be satisfied if

r 2

This choice of free functions makes the
zero-order term u orthogonal to the higher
terms T: and T.. Such a distinction is very
often useful in perturbations calculations. It
is quite important to mention that if Z=0, the
same values of the free functions o and 2
previously obtained by [1] for this kind of
choice can be concluded.

After substituting from Equation 30 in
Equation 18 and then integrating one can
get the variation of the amplitude p of the
zero-order solution u with respect to time t
as:

_ P (31)
pP=p, exp(—jt)tl - Eap” (exp(—eZr) -1

Then subéﬁﬁitihg from Equation 30 and
31 in Equation 17, and by integrating we get
the variation of ¢ with respect to t as:

3 o
g272 31 W3 BPo
d=0,+(1+ . t)+488:1n( : 3 (32)
—Sp(,
4
7 2
w+ P (w1
2el 64L :
Where
=(1- = ep,”)exp(elt) + gsp ’ (33)
4 A
CONCLUSIONS

In this work, the method of normal forms
is used for the investigation of the effect of a
small linear damping on the freedom of
choice of the zero-order term in the
perturbative expansion of the unforced
Duffing’s oscillator. We found that:
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1- There are (n+1)free terms in each order

n. These free terms are of the form

™ k=0,1,2,....,n. Meanwhile, when
damping is neglected, there is only one

k~1_ *k .
free term of the form ¥ u# in each

order n.

2- Because of the effect of dampmg,
most of the choices, most of the free
coefficients are of complex nature as
compared with the free coefficients of
the undamped case which are chosen to
be real.

3- When  damping is neglected, the
amplitude p of the zero-order solution u
is_constant and equals its initial value
P, - As for the damped case, p decreases
exponentially with time (Equation 21) in
the choices of a, b and c.

4- For the undamped case, the phase ¢ of
the zero-order solution u depends on p,
and does not vary with time [1].
Meanwhile, it is well known that a one-
degree-of freedom conservative system

is integrable [1,12], so that the -
frequency ® can be computed to any

desired accuracy since the period of the
motion is given by:

§,/2[E -]

(34)

Where E is the total energy and: V{x) 1s__':

the potential energy.

For the undamped Duffing’s oscﬂlator
the integral in (34) can be converted to an
elliptic integral [1,11,12] and the period T
can be computed exactly and no secular
behavior should develop. As for the damped
case studied in this work, ¢ depends of p,

and varies with time. So the characteristic
frequencies can not be computed
independently of the perturbative

approximation to the solution. The simplest

example of this fact is in the choice (d)
where ¢ is of constant value (Equation 29)

and hence can  be interpreted as a
fundamental frequency of the zero-order
solution of this choice.

“ise L, . NOMENCLATURE

E. w5 Time. A

h'd Dynamical variable.

X Derivative of x with respect to
time.

v,A

]

Complex dynamical variable.

*

z -Complex conjugate of z .

u Zero-order solution.

T, Expansion term of order n in z.

U, Expansion term of order n in #.

On Expansion term of ordernin U, .

R Real part of the complex function
.

d Imaginary part of the complex
function .

r Subscript that refers to the real
part of a complex number.

i Subscript that refers to the
imaginary part of a complex
number. -

a, B’ 6) . )
Coefficients of free functions.

Y Functions that characterizes the
zero-order solution.

¢ principal argument of zero-order
solution-

p Amplitude of zero-order solution.

o Frequency.
K -l Damping coefficient. e J‘
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