Plates that have clamped,

_ INTRODUCTION
' The analysis of the free transverse
vibration of plates plays an important role
in the design of a variety of structures. When
the plates are homogeneous and for some
special arrangements of  boundary
conditions, there are closed form solutions
for their natural frequencies. However, when
the plate sides are supported in any
complicated fashion or when the plate is non
uniform, no closed form solutions exist and
one has to apply approximate mathematical
methods along with numerical analysis. The
study of the free lateral oscillations of
jariable thickness plates has attracted the
attention of many investigators. It is known
that, an isotropic plate that has linear
thi variation will have a cubical
ing flexural rigidity. Therefore, the
letermination of natural frequencies of such
L plate will be more complicated than a plate

Ashton [1, 2] determined both the
atural frequencies and the natural modes
or clamped tapered rectangular plates by
pplying the Rayleigh- Ritz method. Cheung
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ABSTRACT

Free lateral vibration of rectangular and trapezoidal plates that have
parabolic thickness variation along the span of the plate has been
studied. An eighteen degrees of freedom triangular plate bending
finite element that has quadratic thickness variation in one direction
is formulated and used in the analysis. The convergence of the
results is ensured by applying several approximations till the results
converge to the desired accuracy. Comparisons indicate that the
results are in good agreement with those available in the literature.
simply supported and cantilevered
boundary conditions are investigated for a range of variation of the
For each ratio, the effects of the
parameters, which govern the thickness variation, on the natural
frequency coefficients are analyzed.

Keywords Free Transverse Vibration, Rectangular Plates, Trape-
zoidal Plates, Non-uniform Thickness.

et al. [3] analyzed the free vibration of
rectangular and other irregular polygonal
plates that have linear thickness variation by
the finite strip method. Chopra and
Durvasula [4] applied the energy method of
Lagrange for tapered skew plates. In
Reference 5, the variational Galerkine
method was used by Filipich et al to
determine the fundamental frequency
coefficient for tapered rectangular plates that
have some  different combinations of
boundary conditions. In References 6 and
7, the Rayleigh-Ritz method was applied by
Laura et al. to solve the problem of free
vibration of tapered cantilever trapezoidal
plates. The differential quadrature method
was ~applied by Kukreti et al. [8] for the
linearly varying thickness rectangular plates.
In Reference 9, the rectangular plate that
has an exponential thickness variation was
considered by Cortinez et al in the two cases
of mixed boundary conditions, the CCCF and
the CSSF boundary conditions. The finite
element method was used and bilinear
approximation of the thickness variation was
assumed along the span of the plate. In
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Reference 10, the natural frequency
coefficients for five regular polygonal plates,
starting from the triangle up to the
heptagonal, were determined by the author.
Both linearly and exponentially varying
thickness plates were considered. Two
triangular  plate bending elements were
formulated and wused in the analysis. In
Reference 11, the problem of free vibration of
clamped square plate that has parabolic
thickness variation in two orthogonal
directions was analyzed by Olson and Hazil
using both experimental and theoretical
methods. In Reference 12, the finite element
technique was used by Mukherjee and
Mukhopandhyay for both linearly and
parabolically varying thickness plates. The
isoparametric quadratic plate bending
element that has 24-degrees of freedom was
employed. For plates that have parabolic
thickness variation, only the case of clamped
square plate was considered.

In the present work, the problem of free

transverse vibration of rectangular and
trapezoidal plates that have parabolic
thickness variation in the span-wise

direction has been studied. The quadratic
thickness variation of the plate along one of
its mid-plane axes result in varying the
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D 94

flexural rigidity of the plate as a six-degree
polynomial of the position coordinate along
that axis. The solution of such a problem will
be much more complicated than that
concerned  with both linearly and
exponentially varying thickness plates. A
new eighteen-degrees of freedom triangular
plate bending element that has parabolic
thickness variation in one direction is
formulated and used in the analysis. The
convergence of the results is checked using
several different mesh divisions. The
solutions for tapered plates, which could be
obtained as special cases of those having
parabolic thickness variation, are compared
and found to be in good agreement with
those available in the literature. Tabulated
results for several cases of the study has
been presented.

THEORETICAL FORMULATION

The considered plate is assumed to
have a symmetric trapezoidal platform
which, for 6=0, is reduced to a rectangular
one. The quadratic thickness variation of the
plate is assumed to be in the span-wise
direction. i.e., the thickness is a function of
the y-coordinate as shown in Figure 1.
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Transverse Vibration of Plates Having Spanwise Quadratic Thickness Variation

In the formulation, the x.v coordinates
and all the deformations of the plate are
nondimensionalized by a characteristic
length, which is the chord of the plate (a)at
its root. The thickness of the plate is
expressed as:

h= h, (1+B1y+p2y?) (1)

where h is the plate thickness at any
position y, h, is the thickness at the plate
root (y=0) and B,, B> are the parameters
which govern the thickness variation. In the
special case, when f;=8,=0, the plate is
reduced to the case of uniform thickness
and when f2=0, it is reduced to the one that
has a linear thickness variation in the span
wise direction. Using Equation 1, the plate
bending rigidity, D, will be given by

D=Do(1+B1y+B2y?)3 (2)

where Do=Eh;3/12(1-v2) is the flexural
rigidity at the root of the plate E is the
Young’s modulus of elasticity and v is the
Poisson’s ratio.

An eighteen degrees of freedom triangular
plate bending element that has quadratic
thickness variation in one direction is
formulated and used in the analysis. The six
nodal variables at each of the element three
vertices are the deflection w; ,the slopes
Wxi,Wyi ‘and the curvatures Wi, Wi, Wi
(i=1,2,3). The transverse displacement field w
within the element is expressed as follows:

w(x,y)={Af"oy 3)

where {A}is a column vector, the elements of
which, are those of a complete quintic
polynomial expressed in terms of the area
coordinates Z ,1 and {«} is a column vector
consisting of 21a;-s interpolation functions to
be determined. Detailed formulation of the
stiffness and mass matrices of the element is
analogous to that presented by the author
[10]. The flexural rigidity of the plate element
in the present formulation, as could be
shown from Equation 2, will be a sixth-
degree polynomial in the y-coordinate.
Therefore, the formulation of the element
matrices here will be much more complicated

than that given in Reference 10 for both
plates of linear and exponential thickness
variation.

The relation between the global y-
coordinate and the local oblique coordinates
Z, mis:

y=yat+yai+yzan (4)

where yi3=yi1-Y3 , V23=y2-y3 and 1,2,3 denote
the three vertices of the triangular element
as shown in Figurel-b.

Substituting for y from Equation 4 into
Equations 1 and 2, the following expressions
for the plate thickness and the bending
rigidity are obtained:

h=ho 38, 2% ™ mi, nk = 0,1,2 (5)
k=1

) 28
D=D, Z Re _émk -

k=1

My

mk, nk=0,1,2, .6 (6)

where S and Ry are constants depending on
the parameters f(,, P> and the global y-
coordinates of the element vertices. Using
Equations 5 and 6, complete formulation of
the element stiffness and mass matrices,
which is analogous to that given in Reference
14, could be obtained. The derivation of the
equations of motion and the substitution of
the Dboundary conditions will not be
presented here since the finite element
technique is well known. Some illustrations
for Equations 3 to 6 are given in the
Appendix.

NUMERICAL SOLUTION AND DISCUSSION

The values of the parameters f,and
which govern the parabolic thickness
variation of the plate can not be arbitrary
chosen. They depend on two other
parameters: the aspect ratio (AR=b/a)and the
tip to root thickness ratio (hi/h,). According
to Equation 1:

iy + P2y = (h/ho) -1

If h=h;then y=y,=AR and the relation
between f,andf- will be governed by

B1x AR+B; x AR2= (h;/h,)-1 (7)
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- For- assumed values of AR and h,/h,,
Equation 7 represents a lnear relation
between fiand f» from which, for an
arbitrary value of B,, one can determine the
corresponding value of 3, and vise versa.

Study of Convergence
Table 1 indicates the first four natural

frequency  coefficients, ho/ Do

where p is the plate density and o is the
natural frequency of the plate, for a clamped
square plate (AR=1) and for two tip to root
thickness ratios(h;/h.=1/2 and h,/h.=1/4).
For each pair of values of B ,andp. , three
different mesh  divisions are examined,
(4x4,5x5and 6x6), which result in successive
numbers of elements of 32, 50 and72,
respectively. As could be shown, monotonic
convergence is achieved through increasing
the number of elements and one can expect
that using a 6x6 mesh division during the

(r=0a?

Table 1 Convergence of results
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analysis will result in sufficiently
solutions.

ACCURACY OF RESULTS

Before undergoing a  ser
computational work, it is nece
demonstrate the accuracy of the
solutions. Table 2 indicates the nal
frequency coefficients for a square plate:
has linear thickness variation along its sf
The presented results for such a plate
obtained here as special solutions from
concern the quadratic thickness variation
substituting p»=0. The results for tl
different boundary conditions, which are
clamped, the simply supported and f
cantilevered edge supports, are compare
with those previously published by o
investigators. They are found to be in gooc
agreement with them.

hi/he (3 B2 N A1 A2 A3 Aa
4 26.312 53.242 53.799 80.268
0.5 -0.5 0.0 S 26.292 53.061 53.636 79.565
6 26.292 53.061 53.656 79.5635
4 29.078 58.992 60.423 89.3935
0.5 0.0 -0.5 3 29.038 58.777 60.146 88.449
6 29.038 58.777 60. 146 88.449
4 20.544 40.699 42.158 63.830
0.25 -0.73 0.0 ] 20.467 40.244 41.835 62.803
6 20.467 40.244 41.8335 62.803
4 24.829 50.349 51.538 78.197
0.25 0.0 -0.75 3 24.623 49.609 50.733 76.534
6 24.623 49.609 350.733 76.534
Table 2 Comparisons of results
gg::ﬁ?:i Reference B1 A1 A2 A3 Aa
Present 39.511 80.533 80.597 118.933
ccce 7 0.2 39.51 80.52 80.59 118.87
8 39.535 - - -
Present 42.911 87.300 87.539 129.295
ccee 7 0.4 42.91 87.28 87.33 129.22
8 42.94 - - -
Present 21.69 54.159 34.199 86.728
SSSS 7 0.2 21.69 54.16 54.20 86.75
8 21.70 - - -
CFFF Present 0.4 3.354 9.279 23.917 33.216
10 3.354 - - -
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Transverse Vibration of Plates Having Spanwise Quadratic Thickness Variation

In Table 3, the results for clamped
square plate for four tip to root thickness
ratios are presented. For each value of h; /ho,
the frequency coefficients are determined for
some different pairs of related values of 3,
and B.. The set of results correspond to the
value of h;/h,=1 and B,=p>=0 represents the
solutions of the uniform thickness clamped
square plate. One concludes that,
decreasing the thickness of the plate along
the span (h;/ho<1) results in corresponding
decrease of the natural frequency
coefficients. The effects of the parameters §3,
and B2 could be explained as follows: The
parameter firepresents the linear thickness
variation of the plate while the parameter 3>
governs its quadratic thickness variation. For
a certain value of h; /h,<1 and AR=1, the two
parameters are linearly dependent according
to Equation 7. When 2= 0, the variation of
the thickness is purely linear and the
thickness of the plate at any positiony is
determined from the relation h=h, [1-(1-
h;/h,)y]. When B,=0, the thickness of the
plate is given from the relation h=h,[1-(1-
h,/hy)y?]. The term (1-h;/h,) represents the

reduction of the thickness in one side of the
mid-plane along the span. Since the aspect
ratio of the plate is unity, then the non-
dimensionalized coordinate y is governed by
the inequality y < land hence y2 < y. In
accordance, the reduction of the thickness in
the case of its linear variation is larger than
that corresponding to its purely quadratic
variation. Since the rigidity of the plate is a
function of its thickness, D=Eh3/12(1-v3) ,
then the case when (,=0 will result in a
value of the rigidity which is less than its
corresponding value for ,=0. Therefore, the
value of 7. for any ratio h;/h,<l and =0
must be less than that corresponding to the
same ratio h;/h, and $,=0. As an example,
for hi/ho=3/4,p>=0andfp=-1/4, the value of
71is 31.342 and for h,/h.=3/4,8:=0,82>=-1/4,
then 7,=32.713. It is also noticed that the
difference between the corresponding values
of 7., increases as the ratio h;/h, decreases.
For  example, the value of x;for
hi/h,=1/4,8,=0,8:=-3/4 is 20.467 while, for
hi/h.=1/4, $,=0,p>=-3/4 , itis 24.623.

Table 3. Natural frequency coefficients for clamped square plates

Hi/h, B1 B2 A1 A2 A3 Aa
1.0 0.0 0.0 35.987 73.403 73.409 108.28
e 0.0 -0.25 32713 66.509 67.381 98.825
0.75 -0.125 -0.125 32.027 65.227 635.597 96.619
-0.25 0.0 31.342 63.809 63.937 94.402
0.0 -0.5 29.038 58.777 60.146 88.444
0.5 -0.235 -0.25 27.663 56.233 56.609 84.029
-0.3 0.0 26.292 33.061 53.656 79.565
0.0 -0.75 24.623 49.609 50.733 76.534
0.25 -0.3 -0.25 21.846 43.742 44.454 67.426
~0.75 0.0 20.467 40.244 41.835 62.803

The cases of simply supported square
plates are analyzed and the results are
presented in Table 4. The behavior of the
natural frequency coefficients along with the
variation of the parameters h;/h,,f1and B. is
found to be nearly the same as that of the
cases of clamped square plates. In Table 5,

Alexandria Engineering Journal, Vol. 38, No. 5, September 1999

the solutions for cantilevered square plates
are given. The variation of the natural
frequency coefficients along with the
variation of the ratio h;/h, is found to be
completely different from that of the two
previous cases of clamped and simply
supported boundary conditions. Itis found
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that, for any value of h,/h,<1, the values of 7.
are greater than those corresponding to the
uniform thickness plate. Such a behavior
may be explained as follows: The reduction of
the thickness along the span of the plate
tends to decrease both the stiffness and the
mass of the plate. According to the Rayliegh’s
method, which roughly approximates the
system to one that has a single degree of

GHAZY

AV B ey s

freedom., the fundamental na
frequency coefficient is predicted from
relation o=,/K/M where K is the stiff
and M is the mass of the system.
variation of both K and M due to
reduction of the thickness may result
values of © which are greater than t
corresponds to the uniform thickness plat

Table 4 Natural frequency coefficients for simply supported square plates

hi/ho B B2 A A2 A3 Aa
1.0 0.0 0.0 19.739 49.344 49.347 78.935
0.0 -0.25 18.041 45.118 45.202 72.144
075 -0.125 -0.125 17.635 44.070 44.072 70.509
-0.23 0.0 17.230 42.938 43.020 68.870
0.0 -0.5 16.216 40.423 40.432 64.807
0.3 -0.25 -0.25 15.408 38.151 38.360 61.537
-0.5 0.0 14.604 35.877 36.264 58.242
0.0 -0.75 14.111 34.549 34.885 56.470
0.25 -0.3 -0.25 12.524 29.966 30.744 49.832
-0.75 0.0 11.739 27.666 28.679 46.461

Table 5 Natural frequency coeflicients for cantilevered square plates

hi/h. B B2 A1 A2 A3 Aa
1.0 0.0 0.0 3.473 8.511 21.295 27.200
0.0 -0.25 3.715 8.385 20.449 24.656
0.75 -0.1235 -0.125 3.653 8.188 19.965 24.039
-0.25 0.0 3.588 7.990 19.481 23.423
0.0 -0.5 4.049 8.297 19.504 22.301
0.5 -0.25 -0.25 3.917 7.872 18.460 20.991
-0.5 0.0 3.770 7.435 17.413 19.687
0.0 -0.75 4.559 8.360 18.406 20.484
0.25 -0.5 -0.25 4.287 7.413 15.944 17.7135
-0.75 0.0 4.115 65.907 14.676 16.344

In Tables 6 and 7, the results for two
clamped rectangular plates, of moderately
large and moderately small aspect ratios,
respectively, are presented. Since the
increase of the aspect ratio tends to increase
the plate area and hence reduces its stiffness
and increases its mass, it is expected that ,
the larger the aspect ratio, the smaller the
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natural frequency of the plate and vise versa.
The variation of 7. along with the variation of
the parameters h;/h,.and B is found to be
similar to that concerns the clamped square

plate.
The problem of the cantilevered
symmetric trapezoidal plate is also

considered. For a plate of AR=1, the results
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Transverse Vibration of Plates Having Spanwise Quadratic Thickness Variation

for three different values of € are givenin
Table 8. It is noticed that, the increase of the
value of © tends to increase the
corresponding value of . for all tip to root
thickness ratios. The reason of such
behavior may be explained as follows: When
6 increases, the rectangular plate (6=0) tends

to be a triangular one that has a larger
stiffness, hence its natural frequency will
increase. [t is also found that, the variation
of L along with the three parameters h;/h,,
Biand B- is similar to that happened in the
case of the cantilevered rectangular plate.

Table 6 Natural frequency coefficients for clamped rectangular plates(AR=2.3)

hi/h, B1 Ba A1 A2 A3 Aa
1.0 0.0 0.0 23.645 27.810 35.427 465.698
0.0 -0.04 21.652 20.972 32.406 42.624
0.75 -0.05 -0.02 21.032 24.944 31.664 41.670
-0.1 0.0 20.409 24.313 30.919 40.711
0.0 -0.08 - 18.863 23272 29.160 38.114
0.5 -0.1 -0.04 17.693 21.964 27.680 36.222
-0.2 0.0 16.511 20.645 26.183 34.309
0.0 -0.12 14.982 20.455 25.500 32.807
0.25 -0.2 -0.04 12.847 17:679 22.485 29.036
-0.3 0.0 11.764 16.277 20.937 27.111
Table 7, . Natural frequency coefficients for clamped rectangular plates(AR=0.4)
hi/h, Br B2 A1 A2 ‘A3 ha
1.0 0.0 0.0 147.78 173.81 221.42 291.87
0.0 -1.5625 132.02 156.38 200.85 266.43
0.75 -0.25 -0.9375 130.69 154.3 197.63 261.31
-0.625 0.0 128.70 151.39 192.86 254.14
0.0 -3.125 11461 137.09 177.935 237.67
0.5 -0.73 -1.25 110.61 131.07 168.28 222.85
-1.25 0.0 107.95 127.60 161.85 212.47
0.0 -4.6873 94.67 115.03 151.50 203.80
0.25 -1.0 -2.1875 88.99 106.55 138.08 '183.42
-1.875 0.0 84.13 99.25 126.45 1635.69
°  Table 8 Natural frequency coefficients for cantilevered trapezoidal plates(AR=1.0)
h:/ho B1 B2 0 A1 Y L3 Aa
<1 3.663 - 10.070 21.768 33.813
1.0 0.0 0.0 10 3.910 12.207, 22217 37.640
15 4.262 135.300 2.793 43.260
S 3.910 9.918 20.953 31.001
0.75 0.0 -0.25 10 4.163 12.033 21.396 34.441
--15 4.523 15.111 21.943 39.821
S 3.774 9.450. 19.970 29.695
0.75 -0.25 0.0 10 4.017 - 11.470 20.381 33.029
15 4.363 14.426 20.899 38.067
S 4.250 9.788 20.149 27.982
0.5 0.0 -0.5 10 4.511 11.854 20.558 31.189
=) 4.879 14.920 21.082 36.069
e S 3.951 8. 773 18.014 24.740
0.5 -0.5 0.0 10 4.187 10.648 18 338 28.122
= 4.527 13.445 18.843 32.442
3 4.769 9.780 10.472 24.707
0.25 0.0 -0.75 10 5.038 11.776 19.858 27.900
15 5.415 14.765 20.378 32.030
S 4.291 8.065 19,377
0.25 -0.75 0.0 10 4.518 9,726 22.820
S 4.845 12.297 26.148
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CONCLUSION

An eighteen degrees of freedom triangular
plate  bending element with parabolic
thickness variation in one direction has been
formulated. It has been employed in the free
vibration analysis of rectangular and
trapezoidal plates that have quadratic
thickness variation in the span wise
direction. -For clamped and simply supported
plates, it is found that the reduction of the
thickness along the span reduces their
natural frequencies, while for cantilevered
plates an opposite behavior is happened. The
effect of the parameters that govern the role
of thickness variation is studied. It is
concluded that, for a plate that has a certain
tip to root thickness ratio and a certain
aspect ratio, the natural frequencies in the
case of purely linear thickness variation will
be lower than those corresponding to the
case of purely quadratic thickness variation.
For trapezoidal plates, it is found that, the
increase of the sweep back angle 6 tends to
make the plate to be much more stiff.

APPENDIX
Equation 3 represents the shape function
of the eighteen degrees of freedom triangular
plate bending element. This equation is a
standard one for such a conforming element.

w=AJT foj= i+t oz Z+oasnt o 2+ a5 in
+ ol N2 F--mmmmmmmmmeee + a2im’. (A-1)

This equation contains the 21-o;’s
unknowns that must be determined. After
substituting for the expressions of the 18-
degrees of freedom of the element and
carrying out the required transformations
between the global and the local systems of
coordinates, eighteen equations between the
21 unknowns are obtained. The other three
equations result from suppressing the
normal slope at the three mid-sides points of
the three edges of the triangle by assuming
that the normal slope along an edge is being
a cubic function of the edgewise direction
coordinate.

Equation 3 is not the corner stone of the
present work. This equation could be used
either the plate has uniform thickness or
variable thickness. The main purpose of the
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= hoS) + SuZ + San + S422 + SsZn + Sen?)

e ho ZSL: imk T]nk (A-Q)
k=1

present work is to study the free transverse
oscillations of the plate when it has a
quadratic thickness variation. In Reference
10, two categories of plates were analyzed,
the first one which have linear thickness
variation and the ‘second were those ha ing
exponential thickness variation.

Equation 1 represents the assume
thickness variation. This equation is actually.
the corner stone of the present work. In
Reference 10, the thickness variation was
given by: h=h,( 1 + fy ) and

h =h.e” but here it is given by: h = h,
(1 + oy + Poy?).

Equation 2 gives the varying bending
rigidity of the plate. It is a function of the
span-wise y-coordinate and contains the
variable y up to the six degree. D=Dg(1 + 1y
+ Poy?)?

Equation 4 indicates the relation between
the global y-coordinate and the local £ ,q
coordinates. y=ys; + yi13Z + y2an . If Equation
4 is substituted into Equation 1, then the
thickness will be given as a quadratic
polynomial of Z ,n as expressed in Equation
5. This polynomial could be explicitly
expressed as follows:

5

The total number of terms is six, my and
ni are the powers of Z and n respectively. The
substitution of Equation 4 into Equation 2
gives the flexural rigidity D of the plate as a
six-degree polynomial of Z ,n that contains
28 terms and each of the powers my and ng
takes the values from zero to six. The explicit
form of this equation is given as follows:

D = Do( R; + ReZ + Ran + R4Z2+ Rsin + Ren?
+ R7Z3 + RyZ2n + RoZn2 + Rion3 +--—---
+ R2pZ6 +----+ Rogns) (A-3)

where Ry are constants depending on the
parameters 1, p2 and the global y-
coordinates of the element vertices.
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