system.

Vibration‘

; INTRODUCTION
. IT'he method of multibody dynamic system
| [1,2] is applied to the single slider-crank
‘mechanism. The mathematical model is
n constructed, such that the crank and
| coupler (connecting rod) are represented by
their center lines and centers of masses [3].
" The slider is considered as a lumped mass,
. performing translatory motion. Since the

d{r %ank is subjected to a resisting torque, it is
\l y

ecessary from the practical point of view to
i inly consider the flexibility of the crank
axis. For simplicity, it is modeled with
I regard of a viscous bearing friction as a
linear torsional spring-damper unit coupled
to the crank.
- The kinematic study is based on the
. translation of centers of masses of crank
and coupler, and the rotation of each with
respect to the mass center [4,5]. The applied
forces are represented in symbolic forms,
and are specified as the dynamic force
acting on the slider, the weights of crank,
cpupler and slider. The crank is subjected to
a resisting torque arised from the torsional
pring-damper coupling. The reaction forces
d moments are analyzed. The friction is
neglected in the coupler turning joints and
the slider contact surface.
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ABSTRACT

The single slider-crank mechanism is mathematically modeled. The
multibody dynamic approach is applied to derive the equation of
motion of the single slider-crank mechanism, as a nonlinear
dynamic system, in the minimal symbolic form. The flexibility in the
slider-crank linkage is just considered in the crank axis. Finally, the
nonlinear mechanism system is linearized to a linear vibrating

Keywords: Machine Dynamics, Multibody Dynamics, Linear

Newton-Euler equations are applied to the
slider-crank linkage to derive the global
equations of motion of the dynamic system
[3,6]. D’Alembert’s principle is applied to

-eliminate the reaction forces and moments,

concluding the equation of motion of the
mechanism system in the minimal symbolic
form [4,7]. The linkage system is finally
linearized [2] in order to be treated as linear
vibrating system.

MATHEMATICAL MODEL OF THE SLIDER-
CRANK MECHANISM

The slider-crank- mechanism is
undertaken as a one degree of freedom
holonomic scleronomic rigid system. The
generalized coordinate is the crank rotation
angle ¢, as shown in Figure 1. This angle
represents the torsional angle resulting from
the flexibility (elasticity) in the crank axis.
The flexibility together with an assumed
viscous bearing friction is displayed via the
torosional action of a linear spring-damper
coupling model shown in Figure 1.

An inertial coordinate system
represented by the fixed Cartesian
coordinates x;,y;2is assigned as a reference
frame [1] to the rigid dynamic system in
Figure 1. The centers of masses of crank and
coupler C. and C,, respectively, are chosen
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as origins of local coordinate systems [9,10],
as indicated in Figure 1. The motion of
crank and coupler can be thus specified by
the translation of centers of masseés and the

Local coordinate
system of the crank

The unit vector B B ™ T

rotation of each link with respect to the
mass center [3,11]. The slider is considered
as a lumped mass, since it performs
translatory motion.

Local coordinate
system of the coupler

Figure 1 Scheme of the slider-crank mechanism model

KINEMATICS OF THE SLIDER-CRANK
MECHANISM ) _

The slider-crank linkage shown in Figure
1 is treated as a closed kinematic chain. A
geometric constraint is represented by the
mathematical relation between the crank
and coupler rotation angles ¢ and 4,
respectively. It is derived to be
2

simno = —r—sinqﬁ,cos2 o= l—’—sinz @ .
L LZ
d . o
—(Z={'=I—cos¢/cos& ¢ % (1)
dg L
a2s _5,,__1;5'«:os¢sin5—sin¢cos5
d¢2 L cos? &

The position of each body relative to the
inertial frame is given by 3x1-translation
vector and 3x3-rotation tensor [4,11,12]. The
crank translation vector and rotation tensor
are determined as

’fscos¢‘| : Ficos¢ -sing O
o =|'ssind ',SC' :{+sin¢‘p cos¢ Of, (2
{ (o J [ 0 0 1] )

respectively, and the position of the coupler
further yields

B

[rcosd +bcosd cosd sind O]

Ip = | rsin¢ -bsiné
0

,S. =!-sind cosd O

0 0 1j‘ =

where s,r,b and L are clarified in Figures 1
and 2. The slider position is just given by
the vector

|

rcos¢+LcosJ"

re = 0 ‘ E (4)
0 ]
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Fio
F:_‘ﬁp Fy Fo%
F, +  Fp
F

Zy

Figure 2 Distribution of reaction forces and moments
arised in the slider-crank mechnism

The  translational and  rotational
velocities of each link can be obtained by
differentiation with respect to time t as

follows :

dr; crj cry

S i (9
B - 251, 8y G5 =es)sT  (6)
dd ! o o TRUTUW i

The same procedure can be followed up in
the derivation of the translational and
rotational accelerations to be

a‘v
- JT1¢+—¢¢+—a—*Jn¢+a -

m’¢3+C—ZL=JRf¢+5= (8)

do; -
=Jpip+
dr Rif cp

where Jri and Jr: are 3xf-Jacobian matrices,
and f=1 is the number of degrees of freedom
for the mechanism system, undertaken in
the study. The infinitesimal 3x1-rotation
vector {&s; in Equation 6 follows from the
infinitesimal skew-symmetric 3x3-rotation
matrix &, [3,11]. The partial time-derivatives
in Equations 5 to 8 vanish, since the linkage
system in Figure 1 is modeled as
scleronomic (time invariant) constrained
system.

The velocity of the mechanism system
can be accordingly read as

a; =

—ssing 0
v.=| scosg |p=Jr.p.0.=|0|p=JRp.0.
0 1 9

-rsing - b8 sin3

rcos¢ - b§'cosd 3 v e " - (10)
Vp: = ¢ = 'JT|}¢’ yWpP = O. = 0 ¢= '~)Rp¢y
0 -8 -8
—rsing — Lo sin 5-|
\"5 = O ¢ = ‘]TS'¢ (1 l)

0

Referring to Equations 1, 9 and 10, the
angular velocity vector @, of the coupler is
parallel to that of the crank, w. and apposite
in direction, i.e.,

8)321 = l(%cochos&Jcb}ezl

(12)
by e |

where e, is the unit vector of the fixed

coordinate z; in the inertial frame shown in
Figure 1. Further, the system’s acceleration
yields
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—scos¢)ﬁ
ae = Jych +| - ssin¢ 09 = JTeb + 3¢,
0

e = JRed (13)

—~rcos¢ - bd"sind - b2 cos &

ap = JTpfli; +| —-rsing - bd"cosd - b8'2 sin 8 4)2
0
= JTpd; + Ep ,
o |
. -5 L
ap= JTP¢ +(0 ‘ch = JRp¢ +Up, (14)
_5'_;
frcos¢—L6’sin5—L5'20055
7 12
ag = Jr4+ 0 1
0
=Jrs$+a. (15)

NEWTON-EULER EQUATIONS OF MOTION

Newton-Euler Equations [3 and 4| are
applied to the mechanism system. Each link
is treated separately for the kinetic study,
ie.,

ma, = f°+ Loy + @00 (16)
=If+1 ,i=c,p.s

The inertia of each body in Equations 16 is
represented by a scalar mass m; and a 3x3-
inertia tensor I with respect to the center of

mass C. The terms f,f and I, are
defined as 3xl-vectors summarizing the
applied and constraint forces and torques,
respectively.

The applied forces and torques acting on
each link of the slider-crank linkage in
Figure 1 can be detailed in the following can
be detailed in the following vector forms:

~mcg—| ()
frahot-flgs 0

g a7)

-mg ) o"[

€. Al

fp= el o lp= OJ’ (18)
e 0
-P-mgg

fs = 0

) 19
| (19)

The scalar masses multiplied by the
gravity acceleration g in Equations 17 to 19
represent the weights of the pertinent links.
The dynamic torques k¢, c¢ in Equation 17
arise from the resistant action of the
torsional spring and damper. The passive
elements yield stiffness and damping
constants k, ¢, respectively. The force Pin
Equation 19 acts on the slider, see Figure 1.
as a dynamic force exciting the linkage
system.

The friction is neglected in the moving
kinematic pairs of linkage system. The
reaction forces and moments arised in the
kinematic ‘pairs of mechanism system,
shown in Figure 2, can be reduced to 3x1-
vectors of generalized constraint forces and
torques [3.4,6] as follows:

fir:Digr,i:c’p,S;lf=Ligr,i:C,p; (20)

where:

gr:[FIEF2| """ %F9]F10|M1}M2|M3\M4F (21)
is 14xl-vector summarizing the reaction
forces and moments illustrated in Figure 2.
The matrices D, Li in Equation 20 are
defined as 3x14-distribution matrices,
clarified in the Appendix.

The inertia tensors I, I, are arranged to
be transformed from

[pxn 0 0
0 I,., 0 |(22)

Iy 00
0 Iy 0

[0 0 Ig| 00 I,

with respect to the local coordinate systems
(body fixed frames) of the crank and the
coupler, respectively, to the inertial frame of
the mechanism system, such that

Ay =

I =
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ES 1S . (23)

ations [3,6,11] of the
n can be derived to be

(24)

, pElmsEflcll } (25)

dlagonal matrix, and E is 3x3-
, and

T T
JR,,} (26)
bal Jacobian matrix. The vector

pap mea e (1o - Belee) l(lpap ~®p pmp)r

(27)
ned as the global vector of Coriolis
and gyroscopic moments. The terms
;) and aplpe)p vanish, since o, =0

juation 13 and the vectors of angular

es o, ,0 are parallel to those of

oments of

momentum Loc. 1o,
espectively. Further,
: T
~¢ [te'l' feT lc'l' leT] (28)
v 2|

s the global vector of applied forces and
orques, and

’I‘ =
D¢ [Dg DS LT py (29)

is the global distribution matrix, indicated in
e Appendix.

(e |

EQUATION OF MOTION OF THE SLIDER-
i3 CRANK MECHANISM
The application of D’Alembert’s principle

"" from hte left with transposed global
‘Jacobian matrix J'will eliminate the
‘constraint forces and torques [4,9,11], since
I;ﬂé =0.

A scalar differential equation of motion
~ in the minimal symbolic form can be thus

by premultiplication of the global Equation

Single Slider Crank Mechanism as Nonlinear Multibody Dynamic System

derived for the nonlinear scleronomic
mechanism system to be

Mp+K¢*=q. (30)
where :

M =TT T =mys™ + rrip"[r2 —2rkS'cos(g + 5 )+ b25,2]
+my(~rsing—L&'sin 5 +len +1[,_.:5’2.
Ko~ 2_gTge = {np(rb[o“'(luro") sin(gﬁ+5:)—5"cos(_¢+o’)]+b25'5')+

ms(Ir sm@+ L J'sin Slrcosqﬁ +L(5'sin 5+057 coso'»+}¢2
1,:.88"
g=m,gssing+ mpg(rsin¢+ ho'sinS )+
mg(rsing+L5'sind)+ Plrsing+L38'sind)—kd—cé.
LINEARIZATION OF THE MECHANISM
SYSTEM

The motion of the slider-crank
mechanism, regarded in the study, is too
small due to the infinitesimal rotary motion
of the crank. The flexibility of the crank axis
just permits the crank to infinitesimally
oscillate. The behavior of the mechanism
system, as a consequence, is assumed to be
linear. It yields

sin¢z¢,cos¢=l,¢2z0,¢220,¢¢=0 (31)
for the infinitesimal crank-rotation angle ¢,
and

. F. ¥
méx~—¢@.cosd=1.6"~—
s L¢. S 5 (32)

with the reference to Equation 1. The
equation of motion of the mechanism system
as a linear vibrating system [8] will be:
Hp+xp+Ep=N, . (33)
where:
2 2

4 2 ) b \ X
u=mes” +myr (I—ZJ oo +1 ),
Z=cC.

;‘:k—{mcg.nkmpg)( %)-Hnsgr(l LH
S \

» \
M, = Pr( 1 +—J¢ _
UL

It 1is revealed from Equation 33 that the
mechanism system yields a crank rotation
angle ¢ = 0O at the stable equilibrium
position. Equation 33 facilitates the
application of the numerical simulation to
analyze and study the dynamic behavior of
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the mechanism system as a linear vibrating
system.

CONCLUSIONS
The single slider-crank mechanism is
modeled as a nonlinear, -scleronomic
holonomic system by the :-method of
multibody rigid systems. The flexibility is
just considered in the crank axis; and
simply represented by the action of linear

spring-damper coupling. This results in an
oscillating motion of the crank, assumed to
be infinitesimal. Newton-Euler equations
with D’Alembert’s principle are applied to
derive the equation of motion of the linkage
system in the minimal symbolic form. The
system is finally linearized to a linear
vibrating system in order to be easily
undertaken in the numerical simulation.

APPENDIX

Arrangement of the Global Distribution Matrix
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