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ABSTRACT

An approximate solution of the first and second order of the forced
satellite equation is investigated within a frame work of a general
asymptotic expansion. The resonance that occurs within each order
is investigated. It was found that for the first resonance case, the
solution obtained is concentric circles and hence the stability of the
singular solution being their center is proved. For the second
resonance case, closed form solutions were obtained, and the
corresponding singular solution was found to be unstable, and was

represented by a saddle point.
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INTRODUCTION

he first to notice the intimate connection

between the equation of a weakly
nonlinear oscillator and that of an almost
Keplerian orbit of a planet was Laplace [1].
Poincaré¢  introduced the notions of
asymptotic expansion with his work in
celestial mechanics [2]. More recently the
advent of artificial earth satellite, manned
space flight and interplanetary orbit have
revitalized and broadened this area of study.
Satellite motions are known to remain in a
bounded region surrounding a gravitational
centre. The dominant force is a spherically
symmetric Newtonian gravitation perturbed
by small effects (a thin atmosphere, a
slightly non spherical earth, a small moon, a
distant sun ... etc.) To account adequately
for the cumulative effects of these small
terms the method of muliple variable
expansion procedure was used. Poincaré
discussed this method and gave due credit
for the original idea to Lindstedt [2].
However, the idea goes further back to Stoke
[3], who used essentially the same method
to calculate the periodic solution for a
weakly non-linear wave propagation.
Lighthill [4] introduced a more general
version of this method. Van Dyke [5] used
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the same method in extensive applications
in fluid mechanics and adhered to it the
nomenclature of the method of strained
coordinates. This method is extensively used
for studying periodic solutions of weakly
nonlinear oscillators and is referred to as
Lindstedt method [6]. Duffing’s equation was
investigated extensively for studying several
aspects of non linear oscillations [6-9]. In
Reference 10 they investigated the freedom
of choice the zero-order term in the
perturbative analysis of  harmonic
oscillators. The exposition they gave was for
the unforced Duffing’s equation. In this
work, we use the same method for studying
the first and second order approximate
solution of forced satellite equation [7, 8]
given by :

%+x=¢x? +eF, cosi.t (1)

where x depicts the variation from a

constant in !, r is the distance from the
T

centre of attraction of an oblate spheroid to
the satellite, t is an angular variable, ¢ is a
small positive quantity, €F, is the amplitude
of an external agent of frequency /.. Equation
1 can be considered as representing an
undamped asymmetric forced non-linear
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oscillation [9, 11-13]. Several. aspects of
these kinds of oscillation have been studied
in our previous works [11-13]. A solution of
the unforced satellite equation is given in
Reference 7. They ' applied Poincaré
expansion theorem and expressed the
solution as a power series of ¢ given by:

X=Xo+eX] +2X0 F cunnnn 2

The method of casting out the resonance
terms followed that of Lindstedt procedure.
The same method was used in several
applications to satellite problems [8, 14].

In this work, we get a solution of
Equation 1 wusing a general perturbation
technique. The solution is expressed in an
asymptotic series of the form

x=Acos(t-0)+exi+e2x2+ ..... (3)
where each of A, 6, X1, X2, ... isin general a

variable. The first term of the expansion
represents the principal part of the solution.
The variation of A and 6 suggests a variation
of parameters treatment. Thus expressing
the solution of Equation 1 in the form of
Equation 3 .has the advantages of both
 techniques namely the perturbation
technique and the technique of the variation
of parameters and avoids the principal
shortcomings of each. In the following
section, we represent the general outlines of
the solution. We give the first and second
‘order approximate solution for the non
resonant case. Then, we investigate the
resonant case that occurs in the first order
and second order approximate solution
respectively. A discussion is presented in
section to follow.

THE SOLUTION
Substituting 3 in 1 yields
2
{d A pd0

: = (‘3@-)2 cos(t —8)
dt? dt dt

2
- Ad : —2ﬁ+2g£‘—flg sin(t - 6)
dt? dt dt dt

d?x a2
21 +X1)+82(» ):2 +X5) (4)
dt

Honssanis s = S[A2 cosz(t -0)+F, cos}.t]
+ 2:2[2Ax1 cos(t - 9)]+ ............

+g(
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. From .equation 4  -we are led to two

variational equations:

2
SA a2, (ﬁ’-)2 =0 (5-a)
dt? dt dt
2 ‘
Ad 9_2dA+2dA@:O (5-b) :
dt2 dt dt dt ‘

and two perturbational equations trough
second order O(g2):

d2X1 2 2 %
5 +X1 = A“ cos“(t-6)+F,cos.t (6)
dt
d2
d}? + X, = 2Ax; cos(t - 0) (7)
t

for ¢ = 0, Equations 5-a and 5-b imply that
each of A and 6 is a constant as it should be.

Also, the complementary functions of the
solution of Equations 6 and 7 are
represented in the zero order solution. All .
what is needed is to get the particular
integral of these equations. For cases in
which a trigonometric term proportional to
any of the two fundamental harmonics cos
(t-6) or sin (t- 6) is present on the right hand
side of Equations 6 or 7, it must be shifted
to the first or second term on the left hand
side of Equation 4 respectively. As a result
the right, hand sides of the variational
equations (Equations 5-a and 5-b) become
different from zero for these cases. Then, the
reduced differential equation together with
the modified variational equations have to
be solved. By this method resonance terms
can be casted out and resonance
phenomena studied adequately. ;

Non resonant case A # 1 and A = 2:
The solution of Equation 6
immediately obtained as:

2 2
X Zi‘-\-——A—COSQ(t—H)‘f F°2

2 & (1-77)
by assuming that each of A and 0 is a
constant. However, when 7. = 1 the term on
right hand side of Equation 8 degenerates
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and the corresponding offending term (last
term on right hand side of Equation 6) has
to be shifted to the variational equations
giver by Equation 5-a and 5-b. This case is
treated separately the next Equation in the
next section When Equation 8 is substituted
in Equation 7, the second order
perturbational value satisfies the equation:

2 3
dd,;Q + X5 = —A? cos 3(t - 6) + ™ :2 {cos[(1 + 1)t - 6]}
+ lAFj’Q {cos[ - 1t - )} 9)
=0

and tizz second order variational equations
become

d’A 90 8, 5
dt? dt (dt) 6" = (10-8)

2
Ad—~2% 2%§ 0 (10-b)
dt? dt dt dt

these two equations can be reduced to

d@ S5 S a2.2

dt '12 _ o o (11-a)
dA

—=0 11-b
dt ( )

merely by assuming that:

2 2
L¥L de)2 A d—A~g—e~ to be of order O(s3)
de? Tdt’ T g2 7 dt dt

The solution of Equation 9 is directly
obtained as

-A3 APO

Xp = cos 3(t-0) - cos[(h+1jt-6]
38 M1=72)(n+ 2) ;
+ %,)EQ————COS[(I - )t -9j
Ml-25)(2-2) (12)

and Equations 11-a and 11-b give :

A = A, = constant (13-a)

6=0, +—5—Ao &2t (13-b)

Assuming the frequency 7 to be positive, by
the same argument as before, the last term
on right hand side of Equation 12
degenerates when 7. ~ 2. The corresponding
offending term (last term on right hand side
of Equation 9) has to be shifted to
variational equations. The solution of this
resonant case 7. = 2 is treated later on.

Thus through second order solution of
Equation 4 for the non-resonant case 2 # 1
and 7. # 2, we have

2 2
x = Acogt - 0) + {—A? - -A6— cos2(t -6)+ F—_z cos},t:\

(1-27)
2| =B e gy e B E At -
+e { 18 cos3(t - 6) }.(1—}.2)(},+2) cosK1+/-.)t‘ 6)’]‘
AF, T o i
+ mcoﬁa /.)t 6]} e (14)

where A, 6 satisfy Equations 13-a and. 13-b

Resonant case A ~ 1

To get the last term on right hand side of
equation 6 shifted to the variational
equations we write:
F, cosit = F, cos[(l-7.)t —B]cos(t-0)+

F, sin[(l - %)t - 6]sin(t - 0)

If (1-7) is a small quantity of order € we
may again reduce the full variational
equations and obtain the system

(15)

de eb, .
A i cos[(1-7.)t - 8] (16-a)
dA 1l FQ : B
dt 2 sin{(1 -7.)t - 6] (16-B}

Introduéing an auxiliary variable ¢ such that

p=({Zajt-0 (17)
we get

d¢ . .. &F,

a4 cosé (18-a)
By (18-b
A S b s
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Let the singular solution of these two
equations corresponds to sin¢=0and A=
A, such that

__tF ’
T 20-7)

To this value of A, corresponds a periodic
solution of period:

1—%:1-(1—}.) = 7.~ 1 which is the impres-
sed frequency with a principal part of
amplitude |Ao | to first order in €. Dividing
Equation 18-a by Equation 18-b we get the
differential:

(19)

0

¢F, Asinpdé+ [2A(1 - 7.) - eF, cospldA =0 (20)

which is obviously an exact one and hence
its general integral is:

A2(1-7)-eAFocos ¢ =C, (21)

where C is a constant
The singular solution appears as one of
these curves when:

Ge —éAOFO . (22)

Introducing the rectangular coordinates a =
A cos ¢ and b = A sin ¢, Equation 21
becomes

a2+b2-2A,a=C", (23)

where C' is a constant with the singular
solution corresponding tob=0anda= A, .
Obviously the curve solutions are concentric
circles of centre (A:, 0). The location of the
centre on the a axis depends on the sign of
(1-7) since each of ¢ and F. is assumed
positive. The stability of the singular
solution being a centre is proved.

Resonant case A ~ 2

To treat the resonance case 7 ~ 2 that
occurs when the second order
perturbational solution is searched for, we
write:

cos|(l - )t - 8] = cos|(2 - )t — 20] cosi(t - )

+sin[(2 - 7.)t — 26]sin(t - 0) (24)
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“side of Equation 9 to the left hand side

and shift the last term on the right hz

Equation 4. The second order varafi
equations, given by Equation 10-a and 10:
are modified and becorne:

- 2 i
49 _ 5 a2e2, Fof” o220 (28

dac 127 7 on-32)

21 —‘!“-‘F%gz sin[(2 - 7.)t - 26]

dt  2(1-:7)

let

b=(2-7)t-20

we get

d¢ - S 2 Fo 2
L =(2-7)-(=A°+

. (2-7) (6 - :"Z)cos¢)s
dA - AF,e’ sing

dt B 2(1_‘/_2) (27'b)

The singular solution corresponds to sin ¢=0
and to A = A; such that:

6 F, 2-7.
+
ST 1-:2 ¢’
To this value of A, corresponds a periodic
solution of frequency ,

1- do/dt =1—%(2—;.):f5' which is half the

) (28)

impressed frequency and the amplitude of
its principal part is equal to A, to second
order of ¢.

Dividing Equations 27-a by Equation 27-b
we get

{2(1—;.2)(_2-;.—EA%;%)-- 2F &* cos¢} 2
6 Jo(29)

dA + AF e’ sin¢d¢ = O

which is not an exact differential. However

putting

x=A and y=¢? F,cos¢ (30)

and separating the variables we get,

N P
B, 2 op-s2j 2=t B,
dx x X 6

21 (31)
)
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whose solution is

x2y = (1-32)[@ - 1)z -1—52-e2x4]4c (32)

Substituting from Equation 30 we get the
equations of the solution curves as:

+£A2Focos¢=
5 ¢g? S 7 =32

c (33

The map of the solution curves in the van
der pol plane wusing the rectangular
coordinates a,b gives the equation

(@? +b?)? ~-152(2—:2—fi)(a2 +b?)
4
(34)
+£F—°(a2 +bp2)/2a=C
5 (1-12)

The solution curves is found to be family of
semicircles whose centre is approximately at
the origin. Hence the values of C whose
solution curves encloses the singular point
(Ao , 0) are stable and those solution curves
whose values of C are such that they do not
enclose the singular point are unstable. As a
consequence the singular point is unstable
(saddle point).

DISCUSSION
In Reference 15 a series solution of some
non linear autonomous differential

equations are obtained. In a previous work
[12], we got a series solution of a

nonautoncmous nonlinear differential
equation of the form:
X +ax?+bx +c=P,sin ot (35)

* with initial conditions
x(0) = Xo (36-a)
and (36-b)

X(0)=0

where a,b,c,P,, ® each is a constant, t is the
time and a dot means differentiation with
respect to the time. Equation 35 can be

reduced to the forced satellite (Equation 1)
when the constants a.b,c, P, , ® are set such
that a=-g, b=1, ¢=0, Po=¢F,,®» =/ and tis
replaced by some angular variable [7] and a
dot means differentiation with respect to
this variable. According to Reference 12 the
solution of Equation 35 is:

1 2. ehy e kg
X =X, - — (X, — 8X,°) Sin? it +——3—sm3 7t

2?2 67
2 “2 il
- 0472 (%o — %" )47 + 2ex, - 1)sin’ 7.t (37)
+ EE%(9),2 + 26X, — l)sins 2+
67.

Comparing the solution obtained in the
present work and that given by Equation 37,
we can get the following comments:

1. Each term of the series, given by
Equation 37, is composéd of several
factors of different order in e. Hence it is
difficult to compare terms of the same
order in = of the two solutions with a
good degree of accuracy.

2. Resonance is obsérved in the solution
(Equation 37) only when 7. = O which
means that the external agent is of
constant value. This changes the
character of Equation 1 to the
autonomous case that was treated in
References 7 and 15. However, the
degradation of the solution near
resonance is treated adequately in the
present work in both the first and
second order solution.

3. Stability of singular solution is treated in
the present work.

4. Solution given by Equation 37 is for the
two typical values of the constants of
integration given by Equations 36-a and
36-b, meanwhile the solution in this
work is for any values of A and ¢ that
satisfy Equation 13 or 21 or 33 when the
non-resonant case or the resonant case
7. =~ 1 or the resonant case 7. ~ 2 is
studied respectively.

5. We believe that each of the two solutions
is valid because we can consider the
series solution given by Equation 37 as a
solution of Equation 1 when no
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constraints are made on the coefficients
of its terms while the method of the
solution in the present work relies on
the smallness of both the coefficient of
the nonlinear term and the amplitude of
the external agent.

NOMENCLATURE
Amplitude of the zero order solution.
Horizontal rectangular coordinate of the
zero order solution.
b Vertical rectangular coordinate of the
zero order solution.
Fo Amplitude of an external agent.
r Distance from the centre of attraction of
an oblate spheroid to the satellite.
t  Angular variable.

P

_ e
x Variation from a constant in —.
T

x1 First order perturbed solution .

x2 Second order perturbed solution.

¢ Small parameter.

¢ Auxiliary variable.

7. Frequency of the external agent.

0 Phase shift of the zero order solution.
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