TECTION OF SYMMETRIC VARIABLES IN SWITCHING FUNCTIONS

specified Boolean functions.

expansion

INTRODUCTION

etecting a totally or partially symmetric
Jfunction is important. Such a function
m be realized economically [2]. A function
f n variables is totally symmetric if it
pains invariant if any permutation of
n variables occurs [2]. Itis partially
apmetric in m variables, 2 <m<n, if it
ins invariant if any permutation of
se m variables occurs [2]. It is said to be
onequivalent symmetric [3] if the variables
if symmetry are all unprimed (or all primed)
nd equivalent symmetric if the variables
e mixed [3]. With respect to two variables
X; one can expand the function about the

f)_{ix S

fxi;;j and fxixj which
an be used to detect symmetry between

these two variables [3]. If f%'in =fxi,—(j, then fis

ponequivalent symmetric in X, X, If

=-j=fxixj, it is equivalent symmetric in Xi, X;.

both are satisfied, it is multiform
petric in X, x; [3). Tsai et al [1].
posed a method for detecting groups of
ametric variables wusing the canonical
RM forms. In this paper, modifications of
that method are proposed. We need not use
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ABSTRACT

This paper investigates a modification of a method proposed by Tsai
et al. [1] for detecting groups of symmetric variables of completely
We adopt the signatures developed in
Reference 1 that allow identifying sets of symmetric variables. The
contribution here is that we do not need to use the Generalized
Reed-Muller (GRM) forms of the function as proposed in Reference
1. Instead, the original function and some simple variations of it are
used. This approach -in addition to its simplicity- realizes the same
advantages of Reference 1, except for detecting the new types of
symmetry proposed in Reference 1. The paper also presents a
simplified method to solve balanced variables problem.
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the GRM forms of the function. Instead,
some simple and direct representations are
proposed. The paper also presents a
simplified method to solve balanced variable
problem. The rest of the paper is organized
as follows: the next section presents the
previous work, the section to follow presents
the proposed approach to detect groups of
symmetry, next we present the proposed
approach to handle balanced variables, and
the last section is for conclusions.

THE PREVIOUS WORK
Tsai et al. [1] proposed representing the
function in one or more of the Reed-Muller
forms. The choice of the polarities of these
forms are based on the weights of each
variable x; denoted Ir,| and | | (the

Nil

number of minterms where X is unprimed
and primed respectively [1,4]). The polarity
is determined as follows [1]:

if It < It | then xi will be negated. Two sets

of signatures are derived, the first one is a
Variable-Inclusion-Count matrix, VIC=( aj)
where a; is the number of terms of length i
that contain variable x;. The other signature
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is the INCidence matrix, INC=( by ) where bj
is the mnumber of terms containing both
variables xi and x; . These sets of signatures
allow to identify quickly the sets of
symmetric variables. One of the advantages
of the approach of Reference 1 is the use of
Functional Decision Diagram (FDD) to
represent the GRM forms. It has two
terminal nodes O and 1. All paths lead to 1

represent terms of function represented in -

GRM form. [tis a tree, each level represents
a variable and each nonterminal node has
two branches labeled O and 1. The label that
agrees (disagrees) with the polarity of
variable indicates the existence (absence) of
the literal in the term.

THE PROPOSED APPROACH
At first, it is required to unify the applied
conditions: i.e. it is required to use only
condition f ,, =f,  to detect any form of

symmetry (equivalent or nonequivalent).
Consider the following theorem:

Theorem 1
If f(x1,..Xi,..,Xj,..,Xn) IS symmetric in  x; ’;'i

(xi X ), then f(xl""X ..... xj.”.x“) and

1

f(Xl-“-Xi----;i-“an) are also symmetricin y;

’;J (;I 7X])

Proof

Without loss of generality, assume that
i=1 and j=2. The symmetry of f(x1,X2,.. ,Xn) in
% 5 ;2 implies that %, =1y x, - This can be
rewritten as f§1§2=%1"2' Letyl:;1 , then
i =f,.,. Consequently, f(yixz,. ,Xa) is

Ya*p

symmetric in y1,X2, Or flx, /%2 Xp) 1S
symmetric in x> X2 (x10x5)

Similarly, it can be shown that f(Xl';(-zf“"Xn)
is symmetric in ;1 x2 (%1 5x,)-

This leads to the definition of term
"polarity vector" -or polarity in short-
adapted in this paper. Consider a function
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f{x1,X2,... ,Xn), since no variable is neg;
is said to be represented in polarity|
The function can be represented in di
polarities (2 cases). For example, reg
each occurrence of xi(y, ) with ;1 (x1) 1

in another representation of the
but in different polarity (01..1). To appl
conditions of nonequivalent symmetsi
required to represent the function
proper polarity (i.e. to determine
variables to be negated.) . This can be
using the variable weights propos
Reference 1.
We will consider the examples of Refé
1.

Example 1
fix1,x2,x3,%4)=> 0,3,6,8,10,11,13,14.
Finding IF.) and | ¥ i, results i

Xi

columns X2,X4 are
complemented.

required

RML and GRML forms

We investigate a canonical repre
tation of a Boolean function called R
Muller-Like (RML) form as it is similar
representation to RM form. Sue
representation can be represented in|
RML form is generated from the mintern
the function by replacing
complemented variable with 1 (ie
consists only of cubes of true variables)
resulting terms uniquely identify
function. i.e. two different functions
have two different representations in!
form as the following theorem states.

Theorem 2
The representations of two differ
functions in RML form are different.

Proof

Let fi and fi be two different functio
i.e. there exists at least one minterm m; tf
exists in fi and does not exist in f; . Let m
an element in f , then mi =m;. ie.th



m of m; will not contain x: while mjwill
ntain  it. This implies the difference in the
presentation of the two functions in RML

(2 ple 2
Consider the function f{x; .x. ,X3,X4)=
- 30,3,6.8,10,11,13,14. Its RML

resentation is as follows:
L X8X4.X0X3, X1, X1X3, X1X3X4, X1X2X4, X1X2X3

milar to GRM form. a GRML form is a
presentation in which each variable has
d polarity in all cubes. i.e. there exists 2"
ent representations. An n-bit polarity
ecter, V, is associated to each n-variable
ction. Bit i of V corresponds to the it
able of f. A zero(one) in bitiindicates
the it variable isin negatlve(posmve)
yolarity, i.e. primed(unprimed).

ple 3 ;
~ The function in example 2 is represented
n GRML form with polarity {11..1):

‘GRML'  form is generated from the
terms of a function f by replacing all
ariables not in its polarity with 1.i.e. for
ach minterms: disagreement of the binary
due of each variable with its polarity
implies replacement of that variable with

Consider example 1 above. The required
polarity is (1010). Replacing all variables not
its polarities with one, results in the
pllowing GRM form :

X2X4'X2X3 X3X4 X1X3 X4 XIX2X3X, 2
X1X,X3:X1:X1X3 X4
To reduce the expansion of GRML form,

ne can consider the complement of the
ction. The following theorem proofs that

{ preserves the same type of symmetry as
the function f.
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Lemma 1

For any function f, =Ty where

Tt
X denotes primed /unprimed.

Proof '
Applying Shannon's expansion theorem

X

Also, /’ can be repre%ented as follows [5]:

xixifs

K'X f XN

I.\(‘Xli‘\\

+Xixjf.\]xj

|
-
Z

The above two formulas imply that ;7

Theorem 3
If a function fis symmetric with xespect

to xi and AJ(Xi) then f is also symmetric
with respect to them.
Proof

Applying Shannon's expansion theorem
4, - _
P=xix I35, xixgfug T xaiXifs

+XiXJ'fxixJ and

The symmetry of fwith respect to xi and

xj implies that f_ et v 5i° Consequently,

f. (- = fTT . This implies that
XiXi NN

f—*“_ S . (lemma 1) which is the condition
NN NN

for fto be symmetric with respect to x; and
Xj.
Similarly for symmetry with respect to x; and

X"

Representation of GRML form
It is similar to that of Tsai etal [1]. It
uses FDD as the following example shows:
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Example 5
Comnsider the function f(x1,x2,X3,X4)=

>0,3,6,8,10,11,13,14. Example 4 shows its
GRML representation in polarity (1010).
Figure 1 shows its FDD representation. One
of the advantage of using GRML instead of
GRM is that the corresponding FDDs of any
GRML form (under different polarities) are
the same. The change is restricted only to
the polarity associated with it.

Figure 1 FDD for a GRML from with polarity (1010)

Example 6

The GRML representation of function f
given in example 4 with respect to polarity
(1100) is the same as in figure 1 with the
associated polarity (1100).

Theorem 4

With respect to the symmetry of a
function f, both GRM and GRML forms have
similar characteristics.

Proof
Without loss of generality, consider a
function f(x1,.., Xn) which is symmetric with

respect to x,and x, (where x; denotes

true/complement but not both). If the
function is represented in the proper
polarity in GRM form, then it will be on the

form klkzglexlgz@x2gz®g3
are functions of x3.x,..x, -

where gi's

Consider the representation of the
in GRML form:
a- As the given function is symmetric
respect to x;.x,, then there exists
of minterms (may be none)of
(7.(1)'(2).(3“)111)'(1.,.1")'(”‘klk2k3"klkl+1")kﬂ
where x;...x; represent literals i

polarities and X% Tepre

literals not in its

contains pairs of the =
(X1X3X1:X2X3-X1)
b- The remaining minterms in the

GRML form as terms containing el
both (x,x,)or neither of them.

representation will be on
x1%2h1©x1h2®©x2h; ®hy where

functions of variables other than x;.x,. -
1.e. '
similar  to that of GRM
(end of proof)

Consequently, the two sets of signatur
proposed in [1] can be applied as follows:
1- A VIC matrix, VIC=(a;j) where a; istl

number of terms of length i -in GRWN

form- that contain variable x; in i

polarity.

Example 7
Consider the functio
f(le;2=X3r;4) represented in example4

then VIC will be as follows:

M oxy | X3 | xq
1 1 0 6] 0
2 0 2 2 2
3 3 2 2 2
4 1 1 1 1
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ch indicates the possibility of
3; ) for being symmetric.

ilarly,
erated,

an [NC madtrix [1] can be
INC=(b;) where by is the
of terms in GRML form
both xi and x; in their

. column of VIC and INC are used as
ures for variable xi. So, we have shown
)r generating signatures of variables,
ed to generate GRM form(s). Instead,
function itself (or the function
ented in other polarity) can be used

' modification proposed to that of Tsai
"va n be summarized as follows: Apply
ame algorithm proposed in Reference 1
se the proper GRML form instead of

g Totally Symmetric Functions

be easilv shown that Theorem S of
ce 1 -for detecting totally symmetric
ons- can be adapted to be applied
espect to GRML forms. Accordingly, f
fally symmetric if the function -
ented in the proper GRML form- either
ns no terms of length k or it contains

rms of length k, where I<k <n (ie.

IDLING OF BALANCED VARIABLES
ions

en) minterm: a minterm which has an
ven) number of true variables.

. a function having only odd (even)

m the above definitions, any function
1 be expressed as the summation of two
__S f() s and fe : i.e. f= fn + fr: 5

rem 5
function f is symmetric with respect to
L X; (;j) if and only if both f, and f. are

etric with respect to them (where f= f,
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Proof
Without loss of generality and for
simplicity, assume that i=1 and j=2.

1- Assuming that f is symmetric with
respect to x;and x2, then f(0.1, Xs,..., Xa)
=f{1,0,x3,..,Xn).
ie. £,(0,1.X3,...,Xn)+f(0,1,X3,...,Xn)
=f(1,0,X3,...,xn)*£:(1,0,X5,...,xn). It can
easily be shown that both £,(0,1,xs,...,Xn)
and  f5(1,0.xz,...,Xn) contain  even
minterms and both f:(0,1,x:,...,xn) and
£:(1,0,xs,...,xn) contain odd minterms.
Consequently,
£(0,1,x3,...,xn)=15(1,0,X3,...,Xn) and
£:(0,1,x3,...,xn)=1(1,0,X3,...,Xn) which imply
that both f, and f. are symmetric with
respect to xjand Xo.

2-Assuming that both f, and f. are
symmetric with respect to x:and Xo,
then £(0,1.xz,....xn)=£s(1,0,Xx3,...,xn) and
ﬁ&(o,1,X3,...,Xn)=fl:(1,0,X‘S,...,Xn).i.‘e’. TR
f(0,1,xs,...,.xn)=f(1.0,X3,...,Xn) - . which
implies that fis symmetric with respect
to xiand Xo.

Similarly, for the symmetry with respect to Xi

and X;

This theorem is useful for the case of
balanced variables. Instead of testing a

function f for polarity, one can test both f,
and f..

Example 8
=Y 3.4,10,13 where the variables are
balanced as shown in the following table:

P
f if:i fx.
X1 2 2
X2 2 2
X3 2 2
Xa 2 2

The table of f. is as follows:

F
‘f,, f\'l k.
X1 1 1
X2 0 2
X3 2 0
X4 1 1
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The polarity of (x2,X3) can be either (0,1) or
(1,0)..
It has to be noted that:

1. The weights of f is omitted as it can be
derived directly from that of fand f.
i.e. only one of fe and f, is sufficient. It
is evident that if the weights of some
variables in f. are different (similar), it
will also be different (similar) in f. as
the sum of the corresponding weights
in f and f. are constant (as the
variables are balanced).

2. Both f and f- can be wused as a
powerful analysis tool to detect groups
of symmetry for any function. The
weights of both functions are used as
signatures which help to get more
necessary information about the group
of symmetry.

Example 9
Consider example 2 in Reference 1.
=20,2,5,6,7,9,13,14. The weights are as
follows:
* |l

X1 )
X2 3
X3 4
X4 4

fy,

A h U

Finding the weights of both f, and f results
in the following tables:

f. fol | s
X1 2 2

X2 1 3

X3 1 3

Xa 2 2

L f2l | s
X1 3 1
X2 2 2
X3 3 1
X4 2 2

From f,, groups (x1,x4), (x2,X3) may be
symmetric. But fc contradicts this possibility.
Consequently no symmetry in this function
and no need to generate VIC or INC
matrices.

R e T TS S O

CONCLUSION

We have preserited a modification of¢
method proposed by Tsai et al [1] fo
detecting groups of symmetric variables. Wi
adopt the signatures developed in Reference
1 that allow identifying sets of symmetri
variables. No need to generate the GR)
from(s) of the function. Instead, the origing
function represented —simply- in the prope:
polarity (GRML form) is wused. This simple
approach realizes the same advantages of
Reference 1 except for detecting the new
types of symmetry proposed in Reference 1.
The advantage of using GRML instead of
GRM is that only one FDD -with different
polarity vectors- can represent different
forms of GRML of the same function. Also a
simplified method to solve balanced
variables problem is presented. This method
can also be applied for any function to get
more necessary information which helps in
reducing the search space for detecting
groups of symmetry. ‘

o REFERENCES

1. C.C. Tsai and M.M, Sadowska,

"Generalized Reed-Muller Forms as a
Tool to Detect Symmetries", IEEE Trans.
Comp., Vol. 45, No. 1, pp. 33-40, (1996).

2. S.R. Das and C.L. Sheng "On Detecting
Total or Partial Symmetry of Switching
function", IEEE Trans. Comp. Vol. C. 20, |
No. 3, pp. 352-355, (1971).

. C.R. Edwards and S.L. Hurst "A Digital'
Synthesis Procedure for Symmetries
and Mapping Methods", IEEE Trans.
Comp., Vol. 27, No. 11, pp. 985-997,
(1978). ‘

. A.D. Friedman, "Logical Design of Digital
Systems", A Pitman Int'l Text, pp. 145-
148, (1975).

5. S.J. Hong and D.L. Ostapko, “On
Complementation of Boolean Functions”,
IEEE Trans. Comp., Vol. C. 21, No. 9, pp.
1022, (1972).

w

N

Received June 8. 1998
Accepted August 30. 1999

B 148 Alexandria Engineering Journal, Vol. 38, No. 5, September 1999



Detection of Symmetric Variable in Switching Functions

N Jles 3 dplall lacll OaleXT
: D> (P 48 "
2 gl L

3500l Aaala - Y1 aSadll g Aulsdl YWY A

Cid\da.’d.o

C desiy OU g J g ALl O i) Ol e BLESTL Aol W 1 e A ) Odes AWEL ol 5

Ol gt gl Logs (S8 b phoan U8 o Ly el gy O Ses am 2121 e b1 A4 )
Al s o Ny a5 dnw glt oy y OIS 5K SIS 8 sl o AU ada G L asiz) ca\ﬂ.i?h
bl LB D e e B s g gyl el Sl By L gdke Aaen DMude ¢l 2! Uy oY)
: _ o B bl gl ol i
e OF Sl o Ay ) sy D5l o et ASCas - i AR b WAL 0ds i SJST

' Al Ol i) Dl gaf 8 Cordl Bl ol g o _oF Sl Bl A3L2) Db gl

Alexandria [zngineering Journal, Vol. 38, No 5, September 1939




