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ABSTRACT

Approximate analytic solution to the non-linear heat conduction are
obtained using the "Integral method". For this solution, the thermal

conductivity, density and specific

heat are all assumed to be

temperature dependent (exponential form and polynomial form).
Three worked problems are solved to illustrate the method. In the
first problem the nonlinearity is due to the boundary condition, in
the second the nonlinearity comes with the differential equation
while the third is a replica of the second but is in polar coordinates.

Keyword: Thermal layer, Kirchhoff transformation.

INTRODUCTION

A. nalytic solutions, whether exact or

pproximate, are always useful in
engineering analysis. When exact analytic
solutions are impossible or too difficult to
obtain or the resulting analytic solutions
are too complicated for computational
purposes, approximate analytic solutions
provide a powerful alternative approach to
handle such problems. The accuracy of an
approximate solution cannot be assessed
unless the results are compared with the
exact solution. In this paper, we propose
the use of the "Integral Method". The
method is simple, straightforward, and
easily applicable to both linear and
nonlinear one-dimensional  transient
boundary value problems of heat
conduction for certain boundary
conditions. The results are approximate but
several solutions obtained with this method
when compared with the exact solutions
have confirmed that the accuracy is
generally acceptable for many engineering
applications. When the differential equation
of heat conduction is solved exactly in a
given region subject to specified boundary
and initial conditions, the resulting
solution is satisfied at each point over the
considered region, but with the integral
method the solution is satisfied only on the
average over the region.
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The integral method, which goes back
to von Karman and Pohlhausen, who used
it for the approximate analysis of
boundary-layer equations, was applied by
Goodman [1] to solve a one dimensional
transient melting problem, and
subsequently by many other investigators
[2-5] to solve various types of one-
dimensional transient heat conduction
problems, melting,  solidification and
ablation problems, and heat and
momentum transfer problems involving
melting of ice in seawater, melting and
extrusion of polymers.

MATHEMATICAL FORMULATION OF
THE PROBLEM

Consider a semi-infinite medium shown
in Figure 1 subject to some prescribed
boundary and wuniform initial conditions
with no energy generation [6]. The
mathematical formulation of this problem is
given as:

cu(x,1) 1 éu(x,t)

inx>o,fort>0 (1)

ox? k ot
Subject to the boundary condition
(0,t)
- K =g, 1), t >0, (2)
and initial condition
ux,0)=ux x>0 (3)
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-K 9'%2 =q(u,,0)
0
Figure 1 Heat conduction in a semi-infinte medium :
BASIC CONCEPTS there is no heat flow, hence the initial
The differential equation of heat temperature distribution remains unaffected
conduction (1) is integrated with respect to beyond 3(t). The resulting equation is called
the space variable x from x = O to x = 3(t), as the energy integral equation (the heat-
shown in Figure 2. 3(t) is called the thermal balance integral).

layer, beyond which, for practical purposes,
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ud.t) = uy;
l . ) Qud.ly
= e Qi rh : u= ufx, 1) P
¢ud,n
— =0
X’

\l

SO

Figure 2 Definition of thermal layver for heat conduction in a semi-infinite region
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~ To solve the energy, integral equation, we
chodse a suitable profile for the temperature
distribution over the thermal layer (0 <x <
3(t)). A polynomial profile P,, is generally
preferred for this purpose, experience has
shown that there is no significant
improvement in the accuracy of the solution
to choose a polvnomial greater than the
fourth degree. The wuse of polynomial
representation for temperature, although
giving reasonably good results in the
rectangular coordinate system, will yield
significant error in the problems of
cylindrical symmetry. In the cylindrical
symmetry [7], the temperature profile is
modified as
u(r,t) =P, (r)lnr (4)
The coefficients in the polynomial are, in
general, functions of time, and are
determined in terms of the thermal layer
thickness J(t) by utilizing the boundary
conditions at the boundary surface, x =0,
and at the edge of the thermal layer x = 3 (t).
Introduce the constructed temperature
profile “into the energy intégral equation and

_ 200

= gou(0,t)

u= u(x, t)

the indicated operations are performed, an
ordinary differential equation is obtained for
the thermal layer thickness d (t).

Once 5 (t) is available, the temperature
distribution u(x,t) is known obtained as a
function of time and position in the medium.

WORKED PROBLEMS
Problem (1)

A semi-infinite medium x > 0, as shown
in Figure 3, is initially at uniform
temperature u; for time t > 0. The boundary
surface at x = O is subjected to the fourth
power radiative heat transfer. i.e,

Kl eo ul- The thermal properties i
&x

and K are all assumed to be constant. Obtain

an approximate solution for the surface

temperature as a function of time ug(t), using

the integral method and a cubic polynomial

representation for the temperature profile.

R

Figure 3 Boundary and initial conditions for a semi-infinite region considered in problem (1)
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Mathematical formulation
The mathematical formulation of this
problem is given as:

2 t o t !
EU(Xy)zcu(x’) O0<x<=, t>0 (5)

x> at
cu(0, t
e . 5 w0, t>0 ©6)
ox
u(x,0) = w; = constant x =20 (7)

The integration of the differential
Equation 5 with respect to the space variable
x over the thermal layer & (t) as shown in
Figure 4 gives

T &%u cu
k ~——2—vdX == —dx
j Ox ct

The integral on the right hand side is
performed by the rule of differentiation
under the integral sign. Then we obtain.

aux,f)T = % x=3t) R .
"[T }O =§;( | u(x,t)dx]'_u(a,t)ﬂl)

250 dt

. 2 3(t) <
k[————au("’ t)-——‘““(o’t’}: < [ [ udx)—u(& 0 32(8)
dt

°x ox de{ 7/,

In view of the boundary and initial
conditions (natural and derived), as
illustrated in Figure 4, Equation 7 becomes

k. 3 - S P 9)

pC dt tdt dt 1

where

Q= _[u(x, t)dx (10)
x=0

Equation 9 1is the energy integral
equation - for- the - considered problem. To
solve this equation we choose a cubic
polynomial representation for u (x,t) in the
form
u(x,t)=arta; xt+asx2+asx3, (11)

where the four coefficients are in general
functions of time. Four conditions are
needed to determine these four coefficients
in terms of 3 (t). The application of the four
conditions as illustrated in Figure 4, to
Equation 11 yields the temperature profile
in the form (the details are given in
Appendix A)

5 4 3
u(x,t) =u; + soug (1) 5{1 - (E)}

-

3K o
,0<x<3 (12)
and for x = 0, Equation 12 gives:
ecut (t)
0, ) =u +——=0 = us (1) (13)
(0.1 3K

From Equations 12, 13 we may write
u(x, t) - ui (1—EJ3

us(t) -u;

\ o

,0<x<5 (14)
Introducing the temperature profile
Equation 14 into the energy integral
Equations 9, 10 and the indicated
operations are performed, and eliminating
d(t) from the resulting expression by means
of Equation 13, we obtain the following
first-order ordinary differential equation for

--the determination of the surface
temperature us (t)
do'e?k 4 2uf (us - ui) - 4ud (us — uif du,
a0 uy a

(15)
withus=wu; for t=0
The integration of Equation 15
establishes the relation between the surface
temperature us(t) and the time t as
40%%k 1 [ L _1)

——t=| -
3K? 3u? uj) (16)
%(L_thg (L _ 1)
7 ] u]) 2 ilul oY

which is an expression for the surface
temperature us(t) as a function of time t.
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u(®d,t) =y,
Ix

u(s,t)
e

WV

Figure 4 Equivalent thermal laver for a semi-infinite region considered in problem (1)

Problem (2)

A semi-infinite medium, 0 < x < x,is
initially at zero temperature. The boundary
surface at x=0 dissipates heat at a constant
rate ¢o. The thermal properties p(u), C(u),
and K(u) are all assumed to be temperature
dependent in exponential form as illustrated

in Figure 5. It is required to obtain an
expression for the temperature distribution
u(x,t) in the medium for timest > 0O using
the integral method and a cubic polynomial
representation for the temperature profile.

ou(0,t)
- K(0, t)—ax-— =q,
7/
4//2’44///'////,7:
Figure 5 Boundém' and initial conditions for r a semi-infinite region considered in problem (2)
Mathematical formulation &u(o,t)
The mathematical formulation of this -K(O,1) —_Bx-, = = g HOTRILL> 0 (16)
problem is given as
2 Biile, 2 il & u(x,0)=0 ,forallx>0 (19)
L {K(x, Y ~(———’j = ol tC(x, ) Y (g
ox ox ot
,x>0,t>0 where
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C= C(u) =GC, eXp(Bu) = C(X,t),
K = K(u) = K, exp {2(a+p)u} = K (x,1), -and

k= k) =5 =k, exp forB)ul = k (x,1)
pC
We apply the transformation
] s)ds = ; poCaexpl(oc+B)s) ds
poCo
V=V(u)= [ exp[{(a+pluj-1]= x(V.t) (20)
a

Then Equation 20 can be expressed as:

usu(v) = In[ia By s 1} =uxt (21)

u cu
o ot

i

2|2

Lapc
t P35

¢

|2

The transformed conduction equation is

C ¢ cV(x,t

L(k(x, g VX, t)j VIR Y
X

-~

ét
, x>0,t>0 (22)

&)

The transformed boundary and initial
conditions are:

k0,9 YOY_ o foran o (23)
X
V({x,0) =0 for all x> (24)

The transformed initial boundary value
problem Equations 22, 23 and 24 is
illustrated in Figure 6.

a+B | poCo
vV é&v cu cu
—===pC,
cX cu X
V(0L
oG “_(;‘\; 1
Figure 6

Integrating the differential Equation 22
with respect to the space variable x over the

thermal layer O (t)as shown in Figure 7 to

obtain

X=8(1) x=8(1]

(1)
¢ V(x. ¢ V(x.t)
[k(x.t)c A(\ t):l = j E_fli dx
cx | 2, ¢t

av(s,t) (V(O t)
cx

k(, t) ——— - k(0, t) ———

x=5(t) \
-4 _ 4t
_dj j' V(x,t)de v, 9

\ x=0

Transformed boundary and initial conditions for a semi-infinite region considered in problem (2)

In view of the boundary and initial
conditions (natural and  derived), as
illustrated in Figure 7, Equation 25 becomes

g = 92 (26)

o= JV(x,t)dx, (27)
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—k(, t)ﬁgj D -y,

V= V(x, t)

V(6,6)=0

N (o,1)

—

eV (6,1)
&2

=0

=0

a(t)

V

Figure 7 Equivalent thermal laver for a semi-infinite region considered in problem (‘2)

Equation 26 is the energy integral
equation for the considered problem. To
solve this equation we choose a cubic
polynomial representation for V(x,t) in the
form

Vx,t)=bo+b;x+byx2 +bsx® ,  (28)

where the four coefficients are in general
functions of time. Four conditions are
needed to determine these four coefficients in

terms of O(t). Applying the four conditions

as illustrated in Figure 7, to Equation 28,
(the details are given in Appendix B), the
corresponding profile becomes:

3
t
V(x,t) = 9o 5()( 3‘-) ,05x <38 (29
3k(0,1) S
and for x = O, this Equation 28 gives
905(t)
V(0,t) = t (30
0= 0.0 V(1) 30)
from Equations 29, 30 we write
3 S :
X
V(x,t) = V(0 ,t (1———) 31
(x,t) = V(.Y 5(1) (31)

Introducing the temperature profile
Equation 31 into the energy integral
Equations 26, 27 and the indicated
operations are performed, we obtain the

following  differential equation for the
determination of the thermal layer thickness
d (1).
Y Vo V(0. 18(t
© = j v(o__t)(péj dx = Y(0.5(t)
A ) 4
(M\ for t > 0 (32)

3 dt 4 J
with & (1) = fort=0
The solution of Equation 32 is

! 1
qot:zV(O:t)S(t) (33)

Eliminating §(t)between Equations 30, 33,
we obtain

qft:%k(o,t) V(0,1 (34)
Using Equation 20
V(0.1) = Polo [e\p (o +Bu(0. 0} ~1] = V,

Alexandria Engineering Journal, Vol. 38, No. 5, September 1999 , D 109



k(0,t) =k, exp{(c+B)u(0, 1)} = k4 (t)

Po o{k(o B }:Vs(t)
a+B| k,

Substituting this into Equation 34, we can
compute ks(t) as a function of time t.
k(1) - 2k kg(t) + kkg(1)
2
_ koqo(a:B) ——
3p.C:
Using Cardan’s method, the details are given

in Appendix C, the solution of the cubic
equation is

L V(0,1) =

(39)

1 18 qO (u+f3

- cos E o )——1J ](36)
k()= 3“ 1+ cos ‘

2|
Once k(t)is computed at each time,

V(1) is calculated as:

Ayerfe”

From V (t)and Equation 33, d(t) takes the

form

5= = 9ot (38)
V(0.1)

Then from Equation 31, V(x,t) is obtained

from which the actual temperature u(x,t) is

determined from Equation 21.

Problem (3 )
An infinite region exterior to a circular
hole of raduis r = a is initially at zero

temperature. For times t > O the boundary
surface atr = a dissipates heat at a constant
rate .. The thermal properties K(u) and C(u)
are assumed to depend on the temperature u
in polynomial form, and the density p =p,=
constant as illustrated in Figure 8. It is
required to obtain an expression for the
temperature  distribution uf(r,t) in the
medium for times t > O using the integral
method with a modified second degree
polynomial representation for the

file.
V 0 = 1 qo - (37) temperature profile
u= u(r, t)
o= u(r, 0)
0. C, K, k
cu(a,t)

- K8 — o =4y

Figure 8 Boundary and initial conditions for an infinite region considered in problem (3)
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Mathematical formulation

The mathematical formulation of the
problem is as follows.
The conduction equation in vector form is

- - &
V.(KVu(r,t)szcﬂ’(‘rT’Q sr2a >0 (39)
c

In scalar form using polar coordinates we get

~ ~ i\
: 1_C_[Krcu(r,t)) 2 pcau(r,t) :

reér Cr ct

r>a t>0 (40)

The boundary and initial conditions are :

xéuet o i.g (41)
or

u(r.0 =0, r=a, (42)

The thermal conductivity K and specific heat
C are given as

K =K(u) = Ko (1+2 n),

C=Cu)=Co (142 ).
Applying the Kirchhoff transformation,. we
get

V=V(u) = I K(s)ds=K (u+y u’)  (43)

s=0
oV “é¢NVoeun cu
=
or GV —ET GT
oN" T itgNcu cu
-—:——:K >
/55 T2 T o (7§ 1

and the transformed conduction equation is

10 Vng) 1 VIRY oy oy (4)
r or or ky ot

The transformed boundary and 1mt1a1
conditions are

_EV(a,t) = o (45)
or
V(r,0) = 0, r>a (46)

The transformed initial boundary value
problem Equations 44-46 is illustrated in
Figure 9.

V= V(r, t)
o= V(r, 0)

Figure 9

e e

Transformed boundary and initial conditions for an infinite region considered in problem (3)
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Integrating the differential Equation 44
with respect to the space variable r over the

thermal layer O (t) to obtain

r=a+8(ti av 1 a-8(tr
%) ) c
j —(r ~ jdr = I —(rV)dr

Jor\ ¢r k, J ¢t ,
Substituting the corresponding boundary
and initial conditions, as illustrated in Figure
10, we find:

d¥
F = ako 9o (47)
where
a+o(t)
Y= J. rV dr (48)

Equation 47 is the energy integral equation
for the considered problem.

To solve this equation, we choose a
modified second degree polynomial Equation
49 for V(r,t) in the form
V) =(cc+tcirt+tcar?)lnr (49)

V(a+d,t)=0

cV o,t

c (aﬁ+ ’).:O
cr

Figure 10 Equivalent theral laver for an infinite region considered in problem (3)

In the foregoing examples we considered
a cubic polynomial representation for u(x,t)
or V(xt) that involved four unknown
coefficients and required four conditions for
their determination. In this problem because
we have only three conditions we considered
a quadratic polynomial representation that
involved three unknown coefficients and
required three  conditions for their
determinations. :

Applying the  three conditions as
illustrated in Figure 10, to Equation 49, (the
details are given in Appendix Dj, we obtain
the temperature profile in the form,

V(r,t) =
gq.,a = \2

—{a+d-r1)Inr,

2adlna - &° ( Jilnr (50)

as<r<a+o,t>0

Introducing the temperature profile,
Equation 50, into the energy integral
Equations 47, 48 and performing the
indicated operations, we obtain the following
differential equation for the determination of

the thermal layer thickness O (t).
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a-3(t)

¥ = I rVdr
r=a
+8)° 5)° .
S8 8AH0) JEHB g s By e g4 B)
2adlna-98- 12 _ 144
_a’(a® +4ad +63°),
12(a +3)° v
, a'(13a® +40ab + 3657 . (51)
144(a + d)°
Using the substitution:
n=2%8, (52)
a ;
the mmtegration of Equation 47 gives
kot 1 .

a 144(m-D{2lna-n+1}
[12n* Inan (720" — 960+ 36jina —13n* + 3607 —32q+9| (53)

Once n(t)is known from Equation 53,
we can determine 3(t) from Equation 52, the
transformed temperature distribution V(r,t)
according to Equation 50. Then the solution
to Equation 40 and the accompanying
boundary and initial conditions given by
Equations 41, 42 is

-1+ 1+$’X

u(r,t) = - o .
2y

From the physical fact that u is real and u=0,

and that y is positive real, then u is uniquely

given by

e fradrY
\ K

: (56)

(55)

u(r,t) = .
2y

CONCLUSION
The results are approximate but several
solutions obtained with this method when
compared with the exact solutions have
confirmed that the accuracy is generally
acceptable for many engineering
applications.
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NOMENCLATURE

u = u(x,t) i
or u(r,t) temperature in Kelvin;
u; = u(x,o) ‘ W
or u(r,o) initial tempera
us = u(o,t)
or u(a,t) surface tem;
V=V(x,1)
or V(r,t) transformed temy
K, thermal conds
K = K(u). thermal conduc
- Cs -+ .+ specific heat at
pressure at 0 K
C = C(u) specxﬁc heat at constant .
pressure at 0 K '
Po density at 0K
p= p(u) density
= K thermal diffusivity at 0 K
poCo
k=K thermal diffusivity
pC
Qraa =ecut heat transfer by radiation
€ emissivity of the surface
o= 5.6697X10*® Stefan Boltzmann constant
W
m’K*
Q... = -k5u  heat transfer by conduction
t time, in seconds
X rectangular coordmate'
T . radial coordinate .-
3 =5 (t) thermallayer thickness
ai, bi,ci coefficients of polynomial
‘5“) =3 o ¥
0= Iu(x, t)dx
x=0
o(t)
O = j'V (x, t)dx
x=0
a-3(t)
et er(r tjdr
a radius of circle
o B,y positive constants
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APPENDIX
Appendix A
ux,t) =a, +a; x+ax?+azx? (A-1)
ux(x,t) = a+t2ax+3azx? (A-2)
Uk (X,1) = 2a,+6 azx (A-3)

The boundary and initial conditions are

K ux(0, t) =-eou'(0,1) (A-4)
ue (3,1) = (A-5)

xd6t%— (a-6)
u(d,t) =u; . . (A-7)

Substituting (A-4), (A-5), (A-6), and (A-7) in
(A-1), (A-2), and (A-3), we get

Ka1=-80'u4(0,t) (
0=a,+22.,0+3a, 8" (A-9)
0=2a,+6a3d (
u, =a,+a,0+a,8" +a,; o’ (

Solving the four equations (A-8), (A-9),
(A-10), and (A-11) we obtain the coefficients

eou*(0, t)3 gou’(0, t)
a,=u, + a, = -
3K K
a, = 0U eou’(0,t) _ eou’(0y)
FeReK 02 33°K

Substituting in Equation A-1, we obtain

ux,t) = u +‘°'°“_4(0-‘E(1 _xy (A-12)
3K 3/

®=T) (u +scu4(05t)6(1_i)3 .

‘:‘T ! 3K ) '

By SO0 (O (a-13)

e 12K

Appendix B
V(x,t) =b,+ b, X+ byx2+bzx2 (B-1)
Vx (x,1) = b1 +2byx+3bsx2 (B-2)
Vix (X,t) = 2b,+6 bsx (B-3)
The boundary and initial conditions are
-k (0,) Vk (0,t) =qo (B-4)
Vi (8.1)=0 (B-5)

Vi (8,1) =0 (B-6)

V(é.t) =0 (B-7)

Substituting: (B-4), (B-5), (B-6), and (B-7)in
(B-1), (B-2), and (B-3), we get

0=b,+b, 0 +b, 2+b3 & 3 (B-8)
0=b,+2b,8+3b, &" (B-9)
0=2b, +6b3d (B-10)
- o= k(0,1) by (B-11)

Solving (B-8), (B-9), (B-10), and (B-11), for
the coefficients we find

3 .
O A .
3k(0,0) k(0.t)
_ 9, b, = 9,
Sme o s W T oo oo
3Kk(0.t) 36°k(0.1)

Substituting these coefficients in Equation
B-1, we obtain :

V(x,t)z—-_——_q“s (1—‘—‘) (B-12)
3k(0.t) )
x=8(1}) 3 3
\ -
D= Jj V(\ t)d\— 3—0—-!( g) dx
_ 98 (B-13)
l”k(O t)
Appendxxc
' 4k: .q, (o +P)t
k3 - 2k ks + kikg - _W‘” o (C-1)

We may eliminate the term k; by the
substitution

M-

sT 3

kg =k, 40 (C-2)

We then obtain the standard form

k'3 1\— k +"k% _-‘1k§_q(:)(a+[3')t

=0(C-3)

27 3p; C;
If the cubic equation has three real roots. We
now find the smallest positive angle

that

cmse=55£(a+5\-1 (C-4)
& ki:\p,C,/ ,
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Then the first real root is given by
2k

ks =—2 cos® (C-9)
Hence the first root of Equation C-1 is
obtained from Equation C-2.
Appendix D
V(r,t) (Cc>+CJI'+C7 r?jinr (D-1)
1
Vr(rt) = (C0+ Ci r+ Co 2 )""
r
+(ci+2cr)lnr (D-2)

The boundary and initial conditions are

Veld = g (D-3)
V,(a+8,t)=0 (D-4)
V(a+8,t)=0 (D-5)

Substituting (D- (D-1),
and (D-2), we get

3
C, +CAFCAL

3), (D-4), and (D-5) in

—q, = +(c, +2c,a)lna (D-6)
a
c, +¢,(a+d)+c,(a+d)
O: o 1 2 7
i
{c, +2c,(a + 8)}In(a + )
0 ={co+c,(a+6)+c3(a+8)2}*

*In (a+ 0) (D-8)
Solving (D-6), (D-7) and (D-8) for the
coefficients, we get
s qoa(a+6): - _ —2q,a(a +9)

° 2a8lna-8°> ' 2abmace’
q.4a
Co S ——rr—e
© 2adlna-3&-

Substituting in Equation D-1, we obtain
4.8 ~{(a +6)—r}: Inr (D-9)

2adlna-&-

Vi )=

Alexandria Engineering Journal, Vol. 38, No. 5, September 1999

M

q.ala+ 6)2 .
r=—>"— %
2adlna - &’

+3 :
* 25 r
r- — + Inrdr
a+d (a+d)’
=a
a(a + 8)°
g Geala 9
2adlna - 32

{(a+ 37

%(13a° + 4ad + 365°)
144(a + )

: (a +4aa+go )l
12(d+0)

Infa + 8) - _34(a+a)*—

na

(D-10)
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