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ABSTRACT

A subsidiary weir is proposed to be constructed downstream of
each of the existing barrages on the Nile river in Egypt to secure its
stability, which might have been affected after the construction of
the Aswan High Dam. The present paper is intended to investigate
the characteristics of seepage flow beneath two structures with an
intermediate filter. The downstream structure (the proposed weir)
has a slopping middle apron and two flat aprons in the upstream
and downstream sides and is also provided with upstream and
downstream cutoffs. The upstream structure (the existing barrage)
has upstream and downstream cutoffs. A conformal mapping
technique is used to solve the problem. Equations to calculate the
uplift pressure distribution acting on both the existing barrage and
the suggested weir are obtained; also equations to calculate the
values of exit gradient along the intermediate filter and the
downstream bed are derived. The seepage flows which seep into
and/or drained from the intermediate filter are estimated. The
analytical results are verified using experimental measurements
performed on electrical analogue model and a very good agreement
is noticed. A computer program is designed to compute the seepage

Barrages

INTRODUCTION :

ue to the degradation along the Nile
river, consequent to the construction of
the Aswan High Dam, the existing barrages,
which had been constructed on the Nile

such barrages, a -subsidiary weir is
proposed to be constructed downstream of

Studies of the seepage characteristics of
two  hydraulic structures with an
‘intermediate filter have been carried out
using conformal mapping technique by
‘several investigators. These studies besides
their application to limited cases such as
‘the downstream structure has either a flat
floor with or without cutoff [1,2,3], or has an
- inclined middle apron without cutoff [4], are
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flow, the uplift pressure and the exit gradients.

Keywords: Drop structures, Seepage, Conformal mapping, Weirs,

difficult to be applied by the practicing
engineers. An approximate solution which is
based on successive conformal mapping
method, for floor having inclined middle
apron with a single cutoff is available [5]. All
these studies considered the existing
barrages as a simple floor without cutoffs or
having single cutoff. No attention has been
made to consider the effect of the floor
thickness.

Here, an analytical solution, using
conformal mapping transformation, for the
problem of seepage beneath two structures
with an intermediate filter has been
obtained. The downstream structure has a
slopping middle apron, with upstream and
downstream cutoffs. The upstream structure
has upstream and downstream cutoffs. The
embedded floor thickness has been taken
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into consideration. The upstream cut-offis
provided to prevent the soil under the
structures from slipping into the scour
holes, while the downstream one is very
important to prevent  undermining.
Equations to calculate the uplift pressure
distribution acting on both the existing
barrage and the suggested weir are
obtained. Equations to calculate the values
of exit gradient along the intermediate filter
and the downstream bed are derived. The
seepage flows which seep into and/or
drained from the intermediate filter are
estimated. The analytical results are verified
using experimental measurements
pericrined on electrical analogue model and
good agreement is noticed.

MATHEMATICAL MODEL

The geometry of a typical two floors with
an intermediate filter is shown in Figure 1-
a. It also shows the flow domain in the Z-
plane. The following symbols are used for
the dimensions shown in this figure: L) is
the length of the upstream floor, CD; Siois
the depth of the front face of the upstream
cutoff, AU; Si is the depth of the back face
of the upstream cutoff , UC; Sxo is the depth
of the front face of the downstream cutoff,
DE; S21 is the depth of the back face of the
downstream cutoff , EF; Lris the length of
the intermediate filter, FG. The downstream
floor GJLMNOQB has two horizontal aprons,
a middle sloping apron and two end cutoffs;
the length of the upstream apron, LM,
equals Lz; the length of the downstream
apron, NO, equals L4. The middle apron, MN,
makes an angle with the horizontal, and
has a projection length equal to Ls. Szois the
depth of the front face of the upstream
cutoff , GJ; Sai is the depth of the back face
of the upstream cutoff, JL; S4o is the depth
of the front face of the downstream cutoff,
0Q; Ss1 is the depth of the back face of the
downstream cutoff, QB. The drop between
upstream and down stream beds equal d.
The effective heads on the upstream and
downstream floors equal to (H:-Hz) and (H2-
Hs), respectively. The two floors are founded
on a homogeneous isotropic pervious bed
extending to infinity in the upstream,

~downstream, and vertically down
directions. ?
Denoting w=¢+iy, where y=sin

function, ¢= velocity potential function

equal to -kH, in which H= the total h

and k= coefficient of permeability.

A complete solution of the problem,

is derived. This is done as follows:

1- Mapping the physical plane (z) onto't
lower half of an auxiliary semi-infinif
plane, where t=r+is. '

2- Mapping complex potential plane |
onto the lower half of the auxiliary ser
infinite t-plane.

3- The w-z relationship is then obtained!
combining the derived equations.

Boundary Condition
As shown in Figure 1-a and 1-c, the fi
stream line, w=0, coincides with t
subsurface contour of the upstream fl¢
AUCDEF. The upstream bed AA, t
intermediate filter FG, and the downstrez
bed BB" are equipotential lines. If
upstream . bed is chosen as a datw
®,,=-kH,, ®, =-kH,, and @y =-kH,
respectively.
Depending on the dimensions of the tw
structures, the length of the intermedia
filter, and the relative value of (H2-Ha)/(H
Hz), three cases can occur: ,
1- Part of the seepage flow coming from the
upstream side is drained through th
upstream part of the intermediate filter
FP. The remaining part of th
intermediate filter, PG, works as an inlef
face. In this case, along the length, FP
the stream function varies between (
and -qi whereas along length, PG, i
varies between - q, and - q,, see Figures
1-a, and 1-c.
2- A streamline, = -q: starting from
somewhere at the upstream bed would
meet the floor GJLMNOQB, at some
point P, where it would divide into two.
streamlines, one along PG, emerging at
G, and the other along PB emerging at B.
In this case the entire intermediate filter
works as an exit face, along which the
value of the stream function varies
between O and -qi, see Figures 1-d.
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Figure 1  Illustration of the problem
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3- A streamline, O starting frem point A,
at the upstream bed and another
streamline, =0 starting from point F, at
the intermediate filter, would meet each
other at point, P, on the upstream floor
and will leave it towards the downstream
bed. In this case the entire intermediate
filter works as an inlet face, along which
the value of the stream function varies
between =0 and qz. The hydraulic head
along the upstream floor would be a
minimum at point, P, as shown in Figure
1-e. The hydraulic head increases from
point, P, in both directions until it
reaches Hz at point F and Hi at point A,
respectively. The stream line Y=qp,
coincides with the subsurface contour of
the downstream floor.

ANALYTICAL SOLUTION
The geometry of the problem and relative
values of the velocity potential y and the
stream function y on the boundaries are
shown in the z-plane, (Figure 1-a).
The quantities ¢ and y are related in the w-
plane, as shown in Figure 1-c. Points in the
z and w planes are conveniently represented
by the complex variables z=x+iy and w=¢+iy.
To solve the problem, points in these planes
are mapped onto common points in the
auxiliary t-plane, as shown in Figure 1-b,
using the Schwarz-Christoffel transfor-
mation. This yields relationships z=fi(t) and
w=f2(t) from which, in principle, values of w
can be determined for all values of z.
To map  the z-plane  polygon
AUCDEFGJLMNOQB onto the t-plane, the
Schwarz-Christoffel equation becomes

(B-tfe-t)n-t)(c-t)"(t-p)dt s
- (5 -1’ (E -0 (v -1 (- v) (t-8) (h-1)°(1-1)°

(1)

t
z=M1j‘
0

where the points A and B are placed at O
and 1, and the points A, U, C, D, E, F, G, J,
L, M, N,O,Q,and B'lieat —® B, 1,3,¢,3,
v, M, v, 8, o, . and o0, respectively, Figure 1-
a,b. The values of these parameters are to
be determined. o,n = angle of inclination of
the slopping floor MN; and M: and N:
=complex constants. At point A, z=0, and

t=0, therefore, from (1) N;=0. Sin
integration of (1) between the limits 6 ¢
is positive, M1 = Mlr =" where M;
modules of M. - ‘
Integrating Equation 1 along
boundaries betiween consecutive ve
AU, UC, CD, DE, EF, FG, GJ, JL, LM,
NO, OQ, and QB, respectively, the follos
eqliations were obtained

B

R, =M, |[Tdf-8,=0} (2)
0

R, =M, ([1d]-S, =0 (3)
g
3

R,=M, |[Tdf-L, =0 (4)

R, =M, |[I dtl—-Sm:O} (5)
19
4

R,=M, ([TIdi-S,=0 (6)
1

Re=M, |[Tdf-L, =0 (7)
n

R, =M, [T dtf-S, =0 (8)
v

Ry =M, |[Idf-S; =0 9)
n
]

R, =M, |[1df-L,=0 (10)
T L, (11)

R, =M, |[Tdt- =0
9 COS T
A

R, =M, [[Tdf-L,=0 (12)
f ; 13

Ru:Mu JI df-S,, =0’ ( )
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S, =0 (14)

> [= integrand of Equation 1. The
0 SvM“" B, 7, 8, 8 & 1,1MVv,6,6,A
i for a particular hydraulic structure,
be evaluated by minimizing the sum of
ibsolutes of the residuals E

IR | (15)
conformal transformation of the w-

e, (Figures 1l-c, 1-d and 1-e), onto the
ane, (Figure 1-b), was given by

M, (-1 (16)

CE-9°G-9°0-’

1 which M> = complex constant. The
rresponding between the various points
n the w-plane and the t-plane are as
hown in Figures 1-c, 1-d, 1-e and 1-b.

Integrating Equation 16 along the
pstream floor, AUCDEF, from O tot, one

+kH1=th' e il L (17)

-9 -9°(1-v)’

‘in which ¢=-kH, at point F, ¢ = -kH> and t=
¢, therefore

(p-t)at (18)
2 P (E-9) (=17 (1-1)°
Integrating Equation 16 in the portion,

~ GJLMNOQB, from y to t, the following
equation was obtained

kaHM

3 p - t)dt
P !t@—o(ww>a—05 =

At point B, ¢ = -kHs and t= 1, therefore

1
KH, ~kH, = M, | (’5’ t)dtq ~ (20)
, U E=) (y =) (1-t)
The two constants M2 and p can be
determine from Equations 18 and 20 for
known values of &, .

Stability of Two Consecutive Floors with Intermediate Filters

Uplift Pressures

Knowing the values of Mir, B, 1,8, ¢, &, v,
n, v, 6,0, %-n M2and p, the uplift pressure
can be determined at any point lying on the
upstream floor (AUCDEF) or on the
downstream = floor (GJLMNOQB) by
substituting the corresponding value of t in
Equations 17 and 19 respectively. The
corresponding location of the desired point
on the z-plane can be obtained from
Equation 1.

Exit Gradient

In addition to the. uplift pressure, itis
also important to know the hydraulic
gradient along the intermediate filter
and/or on the downstream bed. The exit
gradient at any point is given by [6]
1 dw dt 21)

Iexi:
k dt dz

Using Equations 1, 16, and 21, the exit
gradient was obtained as

ot TR M (22)

(=@ (-v)°(t -0 (- 1)° (- 1)
B-t)e- - o -0 (t-u)

The maximum exit gradients occur at
points F, G, and B, (Figure 1-a) can be
found by inserting t= (, y, and 1,
respectively into Equation 22.

Seepage Flow
Case 1: E<p<y

The seepage flow which seeps into (qi)
and/or drained (q2) from the intermediate
filter may be obtained from the following
equations:

i =M p (p-t)dt 23
ey eyay
7 -t (24)

o f EE-9 (-0 (-1
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Case 2: < p<y

The seepage flow which seeps into (q1)
the intermediate filter may be obtained
from the following equation:

oy = j (P t)dt (25)

2t Y t) (1- t)

Case 3: (< p<Ly

The seepage flow which drained (q2) from
the intermediate filter may be obtained from
the following equation:

.’ —
iq, =M, [ bt 26)

2 ! tj(é B t)As(Y 5 t),s (1 - t).s

EXPERIMENTAL VERIFICATION

In order to verify the analytical solutions,
some experimental results were acquired
using the method of electrical analogy [7,8].
A model was formed from a sheet of
electrically conductive paper and
incorporated into a Whetstone’s bridge
circuit. The outer boundary of the
conductive sheet has been cut as an elliptic
shape to simulate the last stream line to
minimize the errors in the experimental
results due to the artificial boundaries. The
model was cut with an extra 1 cm deep strip
along the upper boundaries and this strip
was coated with highly conductive silver
paint to form the equipotential boundaries.
Wires were soldered directly to these
boundaries to avoid the problem of variable
contact  resistance. Three comparative
studies were made using values of Sz1/Li=
0.10, 0.15, 0.2 and fixed values ofL;/Li=
2.5, Swo/Li= 0.1 L2/Li= 0.15, L3/L;= 0.25,
La/Li= 0.3, d/Li= 0.05, S30/Li=0.1, and
S41/Li= 0.15. The relative thickness of
upstream and downstream floors (T/L1) were
considered 0.025. For these ratios, the
values of (Hz-Hs)/(Hi-H2) are 0.5, 1.0, 1.5,
and 2.0 respectively. For each S20/Li value,
the relative potential at the key point were
measured. The relative potential at the key
points were calculated also using the
presented analytical solution. This resulted
in the pairs of relationships shown in Figure
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~method [9], with the aid of Gaus:

2. Upon observing the results in this fig
one can immediately see that a g
agreement between expenmental
theoretical results prevails. The ma
value of the percentage error between
experimental results and the analyti
results is less than 5%.

RESULTS AND DISCUSSION

The equations derived herein have bei
used for computations of uplift pressur
acting on both upstream and downstres
floors, seepage discharge and exit gradier
along the intermediate filter and fi
downstream bed. These calculatiot
involved the evaluation of many integral
which were computed on a digital compul
by* numerical methods. The random searc

Chebyshev formula [10], have been usedt
find out the state variables involved i
Equation 1 for a physical dimensions of thi
structures. The wuplift pressures at kel
points corresponding to these physica
dimensions of the structures are determine
from Equations 17 and 19 after determining
the values of M2 and p from Equations 18
and 20. The obtained results are used (g
illustrate the effect of the change in filtes
length, dimensions of the structure, and
relative effective head (H2-Hs)/(H:-Hz2) on .l
seepage characteristics.

Effect of Ratio of Effective Heads

The net uplift pressures acting under the
upstream floor are significantly decreased as
the ratio of effective heads (H2-Ha)/ (H1-H2
increased, (Figure 2-a). . ‘

Figure 2-b shows that the increase in the
value of ratio of effective head results in an
appreciable decrease in the value of uplift
pressure acting on the down stream floor.

Effect of Relative Filter Length (L:/Li)

Figure 3-a shows that net uplift
pressures acting on the upstream floor are
slightly increase as the relative filter length
is increased. On the other hand, the values
of = mnet uplift pressures acting along the
downstream floor significantly decrease as
the filter length is increased. Lengthening
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the intermediate filter to a certain extent,
namely L:/Li1 =1.0 in Figure 3-b, results.in a
small reduction in the exit gradient at point
 F. For longer filter length, however this
trend reverses and an appreciable increase
of the exit gradient at point F is noticed.
- Figure 3-b also shows that exit gradient at
point B decreases significantly as the
relative filter length is increased.

00 02 04 06 08 10 12 1
Distance along the subsurface contour (X/Ly)

4

(H-H3)/(Hy-Hg)

Figures 3-a and 3-b show that increasing
the full length of the filter (Li) beyond five
times the length of the upstream floor (L1)
will have a negligible effect on the uplift
pressures acting on both upstream and
downstream floors and on the exit gradients
at points F and B. Hence, for Lt/L1>5.0, both
structures can be treated as a separate
structure.

b)

(=}
n

e
N
A

4 = Theoretical results
B

1.0

0.0

00 02 04
Distance along the subsurface contour (X/L1)

T

06 08

Figure 2 Comparison between experimental and theoretical results for relative uplift pressure acting along the subsurface
contour of: a) upstream floor; b) downstream floor, Sz1 / L1 = 0.15

a)
7
6- :
a9 D '
4-

Hydmulic head at the key points in ms

i o v P ——— v
0 2 4 6 8 1¢
Relative filter length (LyL,)

Figure 3 Effect of filter length: H1=7; H2=3; Ha=1;
thickness t = 1.0 all dimensions in ms
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Effect of Downstream Cutoff of the
Upstream Structure (S21)

A perusal of Figure 4 indicates that the
uplift pressure acting on the upstream floor
increases with an increase in depth of the
downstream cutoff. Exit gradient at the

downstream end of the upstream structure,

a)

(=

o
1
4

i

Hydraulic bead at the key points s ms
E S
\a ¢

="
i

w
A

b J
= —tmsn N
2 1 (0]
7 Q
1 A T S e
0.05 0.10 0.15 0.20
(S Ly)

Figure 4 Effect of Sz1: Hi1=7; H2=3; Hs=1; S1:1=4.5; S31=4.5; S31=4.5; Sa0 = 7.5; L1=60; L2=9; L3=15; L4=18; d=3; Lr = 150

and floor thickness t = 1.5 all dimensions in ms

CONCLUSION

Using the Schwarz-Christoffel

fransformation, an exact solution has been
obtained for the problem of seepage beneath
two consecutive structures with
intermediate filter, founded on infinite
pervious soil. The floor of the upstream
structure is flat with two end cutoffs. The
downstream structure has a middle inclined
apron, upstream and downstream horizontal
aprons and two end cutoffs. Many other
special cases can be handled easily within
the proposed solution.

Equations were obtained to calculate the
uplift pressures acting on both the existing
barrage and the subsidiary weir, the exit
gradients along both the intermediate filter

C 138

point F decreases with an increase in
depth of the downstream cutoff.
Increasing of downstream cutoff, Sz
a negligible effect on the uplift pre
acting on the upstream and downstrea
structures and on the exit gradient at
downstream end and on the intermedi
filter.
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and the downstream bed and the seepage
flow which seeps into and/or drained from
the intermediate filter.

The derived equations have been used
estimate the  flow characteristics, fi
llustrate the effect of relative filter lengl
(Lt/L1), ratio of effective heads (Hz-Ha)/(Hy
H2) and downstream cut-off (S21).

A computer program is designed to
handle the problem and the other special
cases. The program may be used to
calculate the seepage characteristics and to
study the effect of the involved parameters
on such seepage characteristics.

Random search method is found to be
useful in solving conformal mapping of flow
domain with several vertices.
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NOMENCLATURE
the drop between upstream and
downstream beds; )
head in upstream bed measured
above upstream bed level;
head in filter measured above
upstream bed level,;
head in downstream bed measured
above upstream bed level;
imaginary unit:
exit gradient;
coefficient of permeability;
floor length of the upstream
structure;
length of the upstream apron of the
downstream structure;
sloping projection of the middle
apron of the downstream structure;
length of the tail apron of the
downstream structure;
intermediate filter length;

M1, M2 = complex constants;
Mir, 8,7, 8,¢,&, v, 1, v, 0, o, &, p and p state

variables;
N1 = complex constant;
p= stagnation point;
.\ P= uplift pressure;
F o= discharge per unit width;
" Ry,...., Ria= residuals;
Si0, S0,
Ss0, S40= depths of front face of cutoffs;
Si1, Sai,
Sa1, Sa1=  depths of back face of cutoffs;
t= complex variable;
w= complex variable;
z= complex variable;
o= velocity potential function; and
o= stream function;
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