
USING NEURAL NETWORKS IN SOFTWARE MODULE IDENTIFICATION

Salwa K. Abd-EI-HaflZ

Engineering Mathematics Depart:tD.ent,Faculty of Engineering,
Cairo University - Giza, Egypt.

ABSTRACT

This paper presents a general approach for the identification of modules
in procedural programs. The approach is based on neural architectures
that perform an unsupeIVised learning of clusters. We describe two of
such neural architectures, explain how to use them in identifying
modules in software systems and briefly describe a prototype tool,
which implements the clustering algorithms. With the aid of several
examples, we explain how our approach can identify abstract data types
as well as groups of routines which reference a common set of data. The
clustering results are compared to the results of many other
modularization techniques. Finally, two case studies were performed on
existing programs to evaluate the modularization approach. Results
concerning the analyzed programs and their generated clusters are
discussed.

Keywords: Clustering, Modules, Objects, Abstract Data Types,
Neural Networks.

INTRODUCTION

The identification of modules withinexisting procedural programs can facilitate
many maintenance activities. By extracting
reusable components from existing software
systems, the population of a reuse repository
can be cost effective [1, 2]. That is why the
extraction of reusable abstract data types has
been the focus of many research activities [2­
5]. In addition, the automatic identification of
modules assists in understanding the
relationships among the components of a
software system. It, thus, facilitates the
recognition and comprehension of the
abstractions existing in a given system
without getting distracted by implementation
details [3, 6 and 7]. Furthermore,
modularization enables the re-engineering of
procedural programs into functionally
comparable object-oriented systems [8-10].
This helps in the modernization of legacy
systems that are difficult to maintain due to
the lack of a modular style. The re­
engineering of such systems into functionally

Alexandria Engineering Journal Vo!. 38, No, 3, D53-D66, May 1999
© Faculty of Engineering Alexandria University-Egypt AEJ 1999

equivalent object-oriented ones makes them
much easier to maintain.

Some of the module identification
approaches are based on defining a model of
the subject system as a graph on which
notable sub-graphs and/ or patterns are
identified [2,3,5,10-12]. Other approaches
apply mathematical concept analysis to the
modularization problem [9,13-15]. Concept
analysis is a branch of lattice theory that can
be used to identify similarities among a set of
objects based on their attributes [9].Cluster
analysis has also been used to identify
modules by, implicitly or explicitly, using a
similarity measure among pairs of functions
[3, 16-19].

This paper presents a modularization
approach that is based on cluster analysis.
More specifically, we use clustering neural
networks to identify modules in procedural
programs. The first section describes two
neural architectures which perform' an
unsupervised learning of clusters. The next
section demonstrates how these clustering

D 53

ABD·EL-HAFlZ

le, ~eural "~l~twork~'~~ be 'used to 'identify
modules in software systems. In that section,
we also give the modularization results of
many examples and compares them with
related approaches. Then we briefly describe
an implemented prototype tool and evaluates
our approach by applying it on two existing
procedural programs. Finally, we summarize
the strengths and limitations of the presented
approach and gives Duture research
directions.

two layers ·of neurons (or nodes) with
feedforward connections (frominput to output
nodes) as well as feedback connections (from
output to input nodes). The input layer
contains' .,as many nodes as the size ofthe
input vector. The output layer has a variable
number of nodes representing the numberof
clusters

Table 1 Animals data for unsupervised learning of
clusters,

Figure 1 An ARTl network with 4 input and 3 output
neurons.

hashashasFliesla}s
hair

scalesfeathers eRRS

1. Dog
10 000

2. Cat
10000

3. Bat
10 010

4. Canary
0011I

5. Robin
0011I

6. Ostrich
0011I

7. Snake
01001

8. Lizard
0100I

9. Alii ator
0100I

CLUSTERING NEURAL NETWORKS
Clustering is understood to be the

grouping of similar objects and the separation
of dissimilar ones. Clustering neural networks
learn clusters in the input data without the
need of being taught. That is, they perform
unsupervised learning of clusters based on
data correlations (i.e., similarity measures).
The same input pattem is presented to the
network several times, and a pattern may
move from one cluster to another until the
network stabilizes. In this paper, we consider
Adaptive Resonance Theory (ART)networks
and Kohonen's Self-Organizing Maps (SOM)
[20-22].

In order to demonstrate how the two
neural architectures perform an unsupervised
learning of clusters, we use the data shown in
Table 1. This data is for a group of nine
animals, each described by its own set of
attributes [23]. The group breaks down
naturally into three clusters: mammals,
reptiles, and birds.

Ouput layer
with inhibitory

~etioJ1s

Inputl.

T

t •

Adaptive Resonance Theory
Adaptive Resonance Theory (ART)models

are neural networks that perform clustering.
They allow the number of clusters to vary with
problem size [21]. The main feature of ART
models is that they permit the user to control
the degree of similarity between members of
the same cluster by means of a user-defined
constant called the vigilance parameter, P.
The ARTI network only accepts binary (Ofl)
input vectors. As shown in Figure 1, it uses

When a new input vector x is presented to
the network, it is communicated to the output
layer via upward connections carrying
bottom-up weights, B. A bottom-to-top
processing stage uses the B weights matrixto
compute the matching scores, y. These scores
reflect the degree of similarity of the present
input to the previously encoded clusters. The
candidate cluster, j, is the one that best
matches the input vector. The similarity

D 54 Alexandria Engineering Journal, Vol. 38, No. 3, May 1999

Using Neural Networks in Software Module Identification

measure used in this network is the hamming
distance which is equal to the number of
different bit positions between two binary
vectors of the same length. Strictly speaking,
the hamming distance is proportional to the
dissimilarity of vectors [22].

The top-down part of the network
performs a vigilance test using the vigilance
parameter, P, with 0 < P < 1. P controls the
degree of similarity between the candidate
cluster, already encoded in the T weights
matrix, and the current input vector. That is,
the current input should be in 'resonance'
with the encoded candidate cluster. Large P
values indicate a more strict similarity
requirement than small P values. If the
vigilance test succeeds, the input is
associated with the winning cluster and the
weight matrices are updated accordingly. If
the test fails, the node j is deactivated and the
search continues until either an appropriate
cluster is found or a new one is created. The
network is 'adaptive' because it allows the
creation of new clusters when deemed
necessary.

Figure 2 shows the results of applying the
ART1 clustering algorithm to the animals data
of Table 1. The input vectors correspond to
the rows of Table 1. Starting with small P
values (0.1 ~ P < 0.4) resulted in the
successful identification of the mammals
cluster. However, the network could not
differentiate between reptiles and birds.
Increasing the Pvalues (0.4 ~ P < 0.6) resulted
in identifying three clusters; mammals,
reptiles, and birds. Figure 2 highlights these
three clusters by using bold rectangles. High
P values (0.6 ~ P ~ 0.9) further decomposed
the mammals cluster based on whether they
fly or not. Theoretically, there is an infinite
number of possibilities for the P values and,
correspondingly, for the clustering results. In
practice, however, the possible clustering
altematives are limited because a range of P
values can give the same clustering results.

Figure 2 Clustering results for the animals example.

Self-Organizing Maps
Kohonen's Self-Organizing Maps (SOM)

have the property of topology preservation. In
a topology-preserving mapping, nearby input
pattems should activate nearby output units
on the map [20-22]. Figure 3 shows the basic
network architecture of Kohonen's SOM. It
consists of a two-dimensional array of
connected neurons. Each neuron is also
connected to all n input nodes. Let Wi denote
the n-dimensional vector associated with the
neuron at location i of the two dimensional
array. Each neuron computes the Euclidean
distance between the input vector x and the
stored weight vector Wi, which is interpreted
as a cluster centroid [20].

Figure 3 An SOM network with a rectangular array of
neurons.

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999 D 55

ABD·EL-HAFIZ

SOM defines a spatial neighborhood for
each output neuron (or node). The shape of
this neighborhood can be square, rectangular
or circular. During competitive learning, all
the weights associated with the winner and its
neighboring nodes are updated. The design
parameters include the dimensionality of the
neuron array, the number of neurons in each
dimension, the shape of the neighborhood
and the learning rate. In our design, we used
one-dimensional arrays. The number of nodes
in this linear array, K, should be larger than
the maximum number of possible clusters for
the problem but smaller than the number of
input vectors [21]. The shape of the
neighborhood we use is circular and the
learning rate is exponentially decaying.

The results of applying the SOMclustering
algorithm to the animals data of Table 1 is

.also 'shown in Figure 2. In this small example,
varying K yields the same clustering results
as those of the ARTl network. It should be
noted that K represents an upper limit on the
resulting number of clusters. Making K
greater than or equal to four in our example
yields the same results because at most four
clusters could be identified in the data of
Table 1.

MODULE IDENTIFICATION VIA
CLUSTERING NEURAL NETWORKS

In this section, we demonstrate how
clustering neural networks can be used to
identifY modules in procedural programs. In
general, we form a routine-attribute matrix
similar to the one given in the animals
example ofTable 1. The rows are the routines
included in the system under consideration.
The columns are the attributes of these
routines. The entries of the matrix are either 1
or 0 depending on whether the routines has a
given attribute or not. Each row of the matrix
represents a single input to the neural
network.. By varying the parameters K and P,
the neural networks output gives multiple
clustering possibilities.

Related literature adopted several
strategies for picking up the attributes.
Attributes used before include: usage of
common global variables [2,3,5, 10,12-151,
dataflow information [17], usage of user­
defined data types [4], in general, and usage
of record (structure) data types, in specific [9,
10]. Similar to SUIand Reps approach [9], our
approach is very flexible and general when it
comes to the choice of the attributes. Anyset
of attributes, that may be useful in some
instances, can be used in our approach. In
our examples and case studies, using the
following attributes, either separately or
jointly, yielded good modularization results:
• Usage of global variables. An attribute

might be of the form 'uses global variable
x'.

• Usage of record (structure) and
enumeration data types. An attribute might
be of the form 'uses fields of struct stack',
'has argument of type struct stack *', or
'return type is struct stack *'.

• Disjunction of attributes related to similar
user-defined types or similar global
variables. For instance, if Tl and T2 are two
similar data types, the disjunction 'uses
fields of Tl or uses fields of T2' can improve
the modularization results [9].

• Usage of data files and/or usage of
read/write statements. In some cases,
such attributes identifYthe modules which
interact with the user.
Since the neural networks can generate

different clustering results at different
parameter values, we form a clustering tree,
similar to those shown in Figures 2 and 5, to
facilitate the visualization and analysis of
clustering re·sults. In this tree, the root node
represents all routines in the program.
Whenever the neural network generates
partitions of an existing tree node, we create
the corresponding sub-nodes which represent
the resulting partitions.

To further explain our clustering
techniques and to facilitate the comparison
with related modularization techniques, we

D 56 Alexandria Engineering Journal, Vo!. 38, No. 3, May 1999

Using Neural Networks in Software Module Identification

use several examples adapted from Canfora et.
al. [3], and Sill and Reps [9]. Despite the fact
that our techniques apply to any procedural
programming language, the examples in this
section are in C.

Figure 4 shows a specific C
implementation of stacks and queues [9].

.Queues are represented by two stack; one for
the front and one for the back. Information is
shifted from the front stack to the back stack
when the back stack is empty. The queue
functions make indirect use of the stack fields
by calling the stack functions. We would like

to identify the two modules representing the
two given abstract data types. Using the
functions of Figure 4 and the attributes of
Table 2, we formed the routine-attribute
matrix of Figure 5. This matrix represents the
input to the two clustering neural networks
under consideration. We varied P between O. 1
and 0.9 with a step of 0.1 and gave Kvalues
that are greater than or equal to 2. ART1and
SOM gave the same clustering tree, which is
depicted in Figure 5. As shown by the two
bold rectangles, the two abstract data types
are correctly identified.

struct stack {int *base, *sp, size; };
struct queue {struct stack *front, *back; };

1* 1 *1
1* 2 *1
1* 3 *1
1* 4 *1
1* 5 *1
/* 6 *1
1* 7 * /
1*8*1

struct stack *initStack(int sz)
struct queue *initQ()
int isEmptyStack(struct stack* s)
int isEmptyQ(struct queue *q)
void push(struct stack* s, int i)
void enq(struct queue *q, int i)
int pop(struct stack* s)
int deq(struct queue *q)

{/* uses fields of struct stack *I}

{/* uses fields of struct queue *f}
{/* uses fields of struct stack *f}
{/* uses fields of struct queue *I}

{/* uses fields of struct stack *f}
{/* uses fields of struct queue *f}
{/* uses fields of struct stack *I}

{/* uses fields of struct queue */}

Figure 4 A sample C-like code for a stack and a queue (adapted from [9]).

Table 2 Attributes for the stack-queue example.

Attribute
Al

argument or return type is struct stack*
A:2

argument or return type is struct queue*
A3

uses fields of struct stack
A4

uses fields of struct Queue

A1A2A3A4

1
1010

2
0101

3
1010

4
0101

5
1010

6
0101

7
1010

'8
0101

Figure 5The routine-attribute matrix and its clustering results for the stack-queue example

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999 D 57

ABD-EL-HAFIZ

Module identification in the presence of
undeSired links

The results generated by clustering neural
networks, in the examples considered thus
far, are similar to the results produced by
many other techniques in literature (see for
example [9 and 10]).To demonstrate the full
power of· clustering neural networks, we now
consider their application to real-life systems.
In such systems, there can be some routines
which cause undesirable clustering of
functions. Canfora et al. [3] describe two
different types of undesired links: coincidental
links and spurious links. A coincidental link
results from a routine that actually includes
implementations of several routines, each
logically belonging to a different module.
Spurious links are created by routines that
access the supporting data structures of more
than one module in order to implement
system specific operations. Many

modularization approaches do not yield good
results when applied to examples that exhibit
undesired links (see for example References5,
10, 12 and 24).

As an example of spurious links, Sill and
Reps [9]consider the followingmodificationof
the stack-queue example given in Figure 4.

1* 4 *1 int lsEmptyQ(struct queue "q) U* uses fields of struct
stack and struct queue
*/)

1* 6 *1 void enq(struct queue *q, int i) U* uses fields of struct
stack and struct queue
*/)

Although such a modification may be more
efficient, it causes some queue routines to
access the supporting data structure ofthe
stack routines. Figure 6 shows the routine­
attribute matrix and the clustering tree after
performing this modification.

AlA2A:JA4

1
1010

2
010 1

3
1010

4
011 1

5
1010

6
011 1

7
1010

8
010 1

Figure 6 The routine-attribute matrix and its clustering results after modifying the stack-queue example

It is clear that the two abstract data types
are still correctly identified. Because
functions 4 and 6 are different from functions
2 and 8, with respect to the set of data they
access, the queue abstract data type
(functions 2, 4, 6, and 8) is divided into two
corresponding partitions. That is, the
clustering technique provides additional
information about similarities among the
functions of a selected module. Compared to
the concept analysis technique presented by

Siff and Reps [9], we do not have to add a
complementary attribute of the form 'does not
use fields of struct queue' to correctly identify
the two abstract data types.

In order to discuss the effect of both
spurious and coincidental links, Canfora et al.

[3] use the example of Figure 7. This example
gives a sample C-like code which uses a
stack, a queue, and a list. The function global­
init (function # 20) is an example of a
coincidental connection, while functions 14-

D 58 Alexandria Engineering Journal, VoL 38, No. 3, May 1999

Using Neural Networks in Software Module Identification

19 exemplify spurious connections. In this
example, we use six attributes corresponding
to the six global variables defined in the code.
Each attribute has the form: 'uses global

ELEM_T stack_struct(MAXDIM);
int stack_point;

ELEM_T queue_structIMAXDIM);int queue_head,
queue_tail,
queue_num_elem;

variable x. For more details on this example
and on its routine-attribute matrix, refer to
[3].

struct liscstruct {ELEM_Tnode_content;
struct liscstruct * next_node;

} list;
main ()
{j* this program exploits a stack, a queue, and a list of items of type ELEL_T */}

/* 1 *1 void stack_push (el)
1*2*1

ELEM_T stack_pop ()
/* 3 *1

ELEM_Tstack_top ()
1*4*1

BOOL stack_empty ()
1*5*1

BOOL stackjull ()

1* 6*1

void queue_insert (el)
/* 7 *1

ELEM_Tqueue_extract ()
/* 8 *1

BOOL queue_empty ()
/* 9 *1

BOOL queue_full ()

/* 10 *1

void liscadd (el)
/* 11 *1

void liscelim (el)
1* 12 *1

BOOL lisUs_in (el)
/* 13 *1

BOOL list_empty ()

/* 14 *1

void stack_to_list ()
1* 15 *1

void stack_to_queue ()

/* 16 *1

void queue_ta_stack ()

1* 17 *1

void queue_to_list ()
/* 18 *1

void list_to_stack ()
1* 19 *1

void liscto_queue ()
/* 20 *1

void globaUnit ()

Figure 7

{j* uses stack_point and stack_struct */}
{j* uses stack_point and stack_struct */}
{j* uses stack_point and stack_struct */}
{j* uses stack_point */}
{j* uses stack_point */}

{j* uses queue_struct, queue_head and queue_num_elem */}
{j* uses queue_struct, queue_tail and queue_num_elem */}
{j* uses queue_num_elem */}
{j* uses queue_num_elem */}

{j* uses list */}
{j* uses list */}
{j* uses list */}
{j* uses list *I}

{j* uses stack_point, stack_struct and list */}
{j* uses stack_point, stack_struct, queue_struct, queue_head and
queue __num_elem */}
{j* uses stack_point, stack_struct, queue_struct, queue_tail and
queue __num_elem */}
{j* uses queue_struct, queue_tail, queue_num_elem and list */}
{j* uses stack_point, stack_struct and list */}
{j* uses queue_struct, queue_head, queue_num_elem and list */}
{j* uses stack_point, queue_head, queue_tail, queue_num_elelm and
list */}

A sample C-like code for a stack, queue, and a list [3].

The results of applying ART1 and SOMare
shown in Figures 8 and 9, respectively. We
varied P between 0.1 and 0.9 with a step of
O. 1 and gave K values that are greater than or
equal to 2. Only P and K values which trigger
a partitioning of an existing cluster are shown
on these figures. ART1succeeds in identifYing
the list (functions 10-13) and stack (functions

1-5) abstract data types. However, it is
unsuccessful in separating the queue abstract
data type (functions 6-9). On the other hand,
SOM successfully identifY all the three
abstract data types. That is, SOMgive results
that are comparable to those of Canfora et al.
[3] and better than those of [5, 12].
Additionally, SOM provide the information

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999 D 59

ABD·ElrHAFIZ

that functions 14-20 can be grouped into
three clusters: (15,16), (14, 18), and (17, 19,
20). As pointed out by Canfora et al. [3],

program. slicing [25] can overcome the
coincidental connection introduced by routine
number 20.

Figure 8 Am'I clustering results for the stack-queue-list example

Figure 9 SOM clustering results for the stack-queue-list example.

D 60 Alexandria Engineering Journal, Vol. 38, No. 3, May 1999

Using Neural Networks in Software Module Identification

IMPLEMENTATION AND EVALUATION
A prototype tool, which supports the

clustering approach presented in this paper,
has been implemented. The tool accepts as
input the routine-attribute matrix. The
routine-attribute matrix is constructed using
simple static analysis of the code. The user
decides which neural network model to use
and its corresponding parameter. The
clustering results are provided using a simple
text-based interface. Currently, the tool is not
provided with an advanced user interface. A
graphical display of the clustering results, as
shown in this paper, would certainly be very
advantageous.

To evaluate our approach, we used the
prototype tool to identify modules in two
existing procedural programs. In the following
two subsections, we present and discuss the
modularization results of these two programs.
Despite the fact that the examples presented
so far focus on the identification of abstract
data types, we demonstrate that our approach
is also appropriate for the identification of
other groups of routines which reference a
common set of data (e.g., object instances)
[10].

First Case Study: The Counting Program
This program performs different counts for

C source files [26]. It provides the number of
commentary source lines, the number of non­
commentary source lines and comment-to­
code ratio for C source files. These counts are
reported for each function, for lines extemal
to functions, and for the source file as a
whole.

The program consists of 800 lines of C
code. It has 17 functions, which are shown in
Table 3. The designer of the program divided
the program into 7 modules. In Table 3, each
of these modules is enclosed between two
dashed lines. The attributes we use for this
program are given in Table 4. Because there is
a small number of global and data type
definitions in this program, we use a
combination of all possible attribute

categories. The attributes include the only
structure defined in the program (count­
struct). The three defined enumeration types
are also included. We consider a disjunction
of the two similar enumeration types,
char_class and token_type. In addition, usage
of two global definitions, data files, and
read/write statements is taken into account

Table 3Functions for the counting program

Function #Function

------------------_._--- --------_._._~._-----------.-

1 main 10_~~P?!~~P?~~~~_______----------------_ .._--_. 2 check_options 11create-node

3
clean_command_line12destroy_node

4
_.Re_t~p..~~~~~c:~~_______13is_empty_list

5
_~~~~)i_f!C:~___________14create_list

6
start_tokenizer 15append_element

7
gectoken 16_~I~)~~c:~~!c:~~~!_______

8
fll1d_function_name 17error- - - - --

- --
9 _~!~~~jI-y'~~~_~__________

Table 4 AttIibutes for the counting program

Attribute
Al

argument /retunl type is struct counCstruct *.
A2

uses fields of struct counCstruct.
A3

argument/return type is token_type or char_class.
A~

uses elements of token_type or char_class.
As

argument fretum type is error_type.
A6

uses elements of erroctype.
A7

uses maJcline.
As

uses max_ident.
A9

uses a file c1ata type.
AlO

uses read/write statements.

Because ART1 and SOM gave similar
clustering results for this program, we only
show the results of ART1 in Figure 10.The
designers view of the program modularization
is correctly identified for 5 modules. These 5
modules are drawn in bold rectangles. The
first two designer-defined modules were
joined together in one module (functions 1-4).
The reason for joining these four functions
together is that they possess non of the
considered set of attributes. That is, they
represent a collection of a driver and
miscellaneous service routines. Functions 6-9

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999 D 61

ABD·1!:L-HAFIZ

are the ones that parse lines of code and
classify them. Functions 11-16 implement an
abstract data type for lists of line counts.
Functions 13, 14 are more similar to each
other than the rest of the abstract data type
functions because they do not use fields of
the count-struct structure. Functions 5 and
10 are considered similar to this abstract data
type because they have argument / retum
types of struct count_struct *. Function 17
generates the error messages.

Figure 10 ART1clustering results for the counting
program.

Second Case Study: The Scheduling
Program

This program schedules a set of courses
offered by a computer science department
[27]. It takes two input files. File 1 contains
information about the courses in the

department catalog, rooms in the building,
and valid lecture times. The second file
contains, for each 'course offered in a given
semester, the course number, its enrollment
and a set of time preferences given by the
instructor of the course. The goal is to
schedule these courses in the rooms such
that a set of constraints given m a
requirements document is satisfied.

The program consists of 1450 lines of
Pascal code. It has 39 procedures/functions
that are shown in Table 5. Table 6 shows
some of the 23 attributes we used for this
program. We used all the user-defined record
data types. We only considered the usage of
global variables of the array and file types (10
out of 21) because there are too many global
variables in the program. Since read/write
statements are used throughout the whole
program, they are not considered in the
attributes list. The program is divided by the
designer into the four modules that are
enclosed between dashed lines in Table 5. In
addition to the driver module, there are
modules to validate the input, perform the
scheduling, and print the output. As shown in
Tables 5 and 6, the program has a highly
nested structure and uses global variables
excessively. It also does not define any
abstract data types. We would like to identify
groups of procedures/functions (modules)
which reference a common set of data.

Table 5 Procedures and functions for the scheduling program

D62

Proced ure / Function#Procedure/Function #Procedure / Function
- - --

--_ .._-----_ .._-----------------
1 main 14chlcfm t_course_no27getJoom_index-------------------------------- 2 geCvalidated_input 15chlCdup28prep_template

3
lengthof 16Validate_Iec_times29sched_pg".pref

4
gecnext_line 17chkjmCtime_slot30sched_llg".pref

5
get_token 18chk_dup311nitialize_pR-reserve

6
string".to_int 19validate-fJle_2 32safe_allotment

7
validate_fIle-1

20get_cow'se_index33update_pg".reserve
8

validate_classrooms21get_preC valid 34sched_pg".no_pref
9

chkjmcrm_no22form_course_rec35____ •~~l).~~_~~g..~~~[l~-(:r_____. ____
10

chkJange_cap23form_preClist 36princoutput
11

sorCrooms24Duplicate_course 37plint_time_table
12

chk_dllp25____~~~~!~~~9~_~____.._.____38princexplanation
13

validate_dept_courses26Schedule 39_____l~~~~-_~~~~!_._______.____

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999

Using Neural Networks in Software Module Identification

Table 6 Some attributes for the scheduling program.

Attribute
Al

uses fields of record p_node_i.
A2

argument jreturn type is "p_nodeJ
: AI2

uses fields of record r_node.
AI3

argument jreturn type is "r_node.
AI4

uses file I
AIs

uses file2
AI6

uses classroom_db

A23

uses expl list

The clustering results using ART1 and
SOM are shown in Figures 11 and 12,

respectively. Because of the large number of
routines, we only form the clustering trees at
three P values (0.1, 0.4, and 0.7) and three K

values (7, 14, and 21). The SOMarchitecture
gave slightly better results than the ARTl
architecture. Thus, we focus on the
description of the SOMresults and only point
out the deficiencies of the ARTl results. In
describing the SOMresults, the author's view
of one correct way to decompose the program
into modules is given. However, there can be
several other modularization views based on
the required level of granularity.

Figure 11 ARTI clustering results for the scheduling program.

Figure 12 SOM clustering results for the scheduling program.

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999 D 63

ABD-EL-HAFIZ

Routines 1, 3, 5, 6, 7,9, 10, 14, 17,26,
and ·36 are included in a single module
because they do not possess any of the
considered attributes. Routines 16 and 18 are
clustered together because they are related to
the validation of lecture times. Routines 2 and
4 are grouped together because they are the
only ones that use the input data files.
Routines 8, 11, 12, and 27 are clustered
together because they manipulate the
classroom_db global variable and/or the
record room_rec. Routines 29,30,34, and 35
are included in single module because they
represent the four main scheduling functions.
Routines 31-33 represent the components of
one main scheduling routine, routine number
30. That is why they are correctly clustered by
SOM. However, they are not correctly
clustered by ARTl. Routines 13, 15,20,22,
24, 25, 28 are clustered together in one
module because they all manipulate the
course_no_db global variable and/or the
record course_rec. ART1 decomposes this
module to a finer level of granularity.
Routines 21 and 23 are clustered together
because they are the only ones that use the
record p_node_str, which is used in the list of
actual student preferences. Because the print
routines (37-39) access a lot of global
variables and record types, they are not
correctly clustered by both neural
architectures. Only routines 37 and 38 are
clustered together.

It should be pointed out that the modules
identified in this case study are totally
different than those intended by the designer.
Our clustering technique is appropriate for
identifying abstract data types and groups of
routines which reference a common set of
data. That is why they are convenient for re­
engineering such a system into an object­
oriented one. On the other hand, Cimitile and
Visaggio [11] use call and dominance
information to identify functional abstractions
and to introduce hierarchical nesting to the
resulting modules. In this case study, such an
approach would offer another modularization

altemative which is close to the one followed
by the system designer.

CONCLUSIONS
We have presented an approach for

identifying modules in procedural programs.
This approach is based on clustering neural
networks. It is very flexible and general when
it comes to the choice of the attributes on
which the modularization is based. By
controlling the design parameters of the two
considered neural architectures, we obtain
multiple clustering possibilities. The design
parameter of ARTI, P, controls the degree of
similarity between elements of the same
cluster. The number of clusters necessary to
achieve this similarity requirement is
automatically determined by the network. On
the other hand, the design parameter of SOM,
K, represents an upper limit on the required
number of clusters. That is, the user identifies
the appropriate number of clusters for a
specific problem by gradually increasing K.

With respect to the clustering results, the two
neural architectures were successful in
identifying abstract data types as well as
groups of routines which reference a common
set of data. However, the examples and case
studies showed that the SOMarchitecture is
slightly better than the ART1 architecture.
While SOM succeeded in identifying modules
in the presence of undesired links, ARTl was
only partially successful. In addition, SOM
modularization results for the second case
study were better than those of ART1.

Future work includes experimenting with
the modularization approach on programs
that are larger than the ones considered so
far. To facilitate industrial utilization of our
approach, the developed prototype tool needs
to be enhanced. The user interface needs to
be improved and a graphical visualization and
manipulation of the results is required.

D64 Alexandria Engineering Journal, Vol. 38, No. 3, May 1999

Using Neural Networks in Software Module Identification

REFERENCES
1. S. K.Abd-El-Hafiz, V. R. Basili, G. and

Caldiera, "Towards Automated Support for
Extraction of Reusable Components",
Proceedings of the Conference on Software
Maintenance, Sorrento, Italy, pp. 212-219,
(1991).

G. Canfora, A.., Cimitile, M. and Munro,
"AnImproved Algorithm for Identifying
Objects in Code", Software Practice and
Experience, Vol. 26, No. 1, pp. 25-48,
(1996).

3. G. Canfora, A.., Cimitile, M. and Munro,
"AnImproved Algorithm for Identifying
Objects in Code", Software Practice and
Experience, Vol. 26, No. 1, pp. 25-48,
(1996).

4. G. Canfora, A. Cimitile, and M. A Munro,
"Reverse Engineering Method for Identi­
fying Reusable Abstract Data Types",
Proceeding of the First Working Conference
on Reverse Engineering, Baltimore,
Maryland, pp. 73-82, (1993).

5. M.F. Dunn, and J.C. Knight, "Automating
the Detection of Reusable Parts in Existing
Software", Proceedings of the 15th
Intemational Conference on Software
Engineering, Baltimore, Maryland, pp. 381­
390, (1993).

6. S. K.Abd-EI-Hafiz, "Effects of Decompo­
sition Techniques on Knowledge-Based
Program Understanding", Proceedings of
the Intemational Conference on Software
Maintenance, Bari, Italy, pp. 21-30, (1997).

7. S. K. Abd-EI-Hafiz, and V. R. A Basili,
"Knowledge- Based approach to Program
Understanding", Kluwer Academic
Publishers, (1995).

8. P. Newcomb, "Reengineering Procedural
Into Object-Oriented Systems", Proceeding
of the Second Working Conference on
Reverse Engineering, Toronto, Ontario,
Canada, pp. 237-249, (1995).

9. M. Sill', and T. Reps, "Identifying Modules
Via Concept Analysis", Proceedings of the
Intemational Conference on Software

Maintenance, Bari, Italy, pp. 170-179,
(1997).

10. A. Yeh, D. R. Harris, and H.B. Reuben­
stein, "Recovering Abstract data Types and
Object Instances from a Conventional
Procedural language" , Proceeding of the
Second Working Conference on Reverse
Engineering, Toronto, Ontario, Canada, pp
227-236, (1995).

11. A. Cimitile, G. and Visaggio, "Software
Salvaging and the Call Dominance Tree",
The Joumal of Systems and Software, Vol.
28, No. 2, pp.117-l27, (1995).

12. S. Liu, N. and Wilde, "Identifying Objects
in a Conventional Procedural Language: AI
Example of Data Design Recovery",
Proceedings of the Conference on Software
Maintenance, San Diego, California, pp.
266-271, (1990).

13. C. Lindig, and G. Snelting, "Assessing
Modular Structure of Legacy Code Based
on Mathematical Concept Analysis" ,
Proceedings of the 19th Intemational
Conference on Software Engineering, pp.
349-359, (1997).

14. H.A. Sahraoui, W. Melo, H. Lounis, F.
Dumont, "Applying Concept Formation
Methods to Object Identification in Proce­
dural Code", Technical Report CRIM­
97/05-77, CRIM, (1997).

15. G. Snelting, "Reengineering ofConfigu­
rations Based on Mathematical Concept
analysis", ACM Transactions on Software
Engineering and Methodology, Vol. 5, No.
2, pp.146-189, (1996).

16. B.L. Achee, D. L. and Carver, "A Greedy
Approach to Object Identification in
Imperative Code", Proceedings of the Third
Workshop on Program Comprehension, pp.
4-11, (1994).

17. D. H. Hutchens, and V.R. Basili, "System
Structure Analysis: Clustering With Data
Binding", IEEE Transaction on Software
Engineering, SE-11, No. 8, pp.749-757,
(1985).

18. R. Ibba, D. Natale, P. Benedusi and R.
Naddei, "Structure-Based Clustering of

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999 D 65

ABD·EL-HAFIZ

Components for Software Reuse", Procee­
dings of the Intemational Conference on
Software Maintenance, Montreal, Quebec,
Canada, pp. 210-215, (1993).

19. T. Kunz, "Evaluating Process Clusters to
Support Automatic Program Understan­
ding", Proceedings of the Fourth Workshop
on Program Comprehension, pp. 198-207,
(1996).

20. A. K. Jain, J. Mao and K. M. Mohiuddin,
"Artificial Neural Networks: a Tutorial",
IEEE COMPUTER, Vo!. 29 No. 3,31-44,
(1996).

21. K. Mehrotra, C.K. Mohan, and S. Ranka,
"Elements of Artificial Neural Networks",
The MIT Press, (1997).

22. J. Zurada, "Introduction to Artificial Neural
Systems", West Publishing Company,
(1992).

23. K. Knight, "Connectionist Ideas and
Algorithms", Cori:ununications of the ACM,
Vat. 33, No. 11,59-74, (1990).

24. P. E. Livadas, and T. Johnson, "A New
Approach to Finding Objects in Programs",
Software Maintenance: Research and
Practice, Vol. 6 pp. 249-260, (1994).

25. M. Weiser, "Program Slicing", IEEE Trans.
on Software Engineering, SE-lO, No. 4, pp.
352-357, (1984).

26. W.B. Frakes, C. J. Fox, and B.A. Nejmeh,
"Software Engineering in the UNIX/ C
Environment", Prentice Hall, (1991).

27. P. Jalote, "An Integrated Approach to
Software Engineering", Springer- Verlag,
(1991).

Received June 8, 1998
Accepted March 25,1999

~\ *' J'-S c.5 ~

o~tiI\ ~L". - ~41\ li:!J.:ilI,j w~y)\ ~

j,~1 ~)~l411~I)~I Js- ~)J\~.h ~ J .~.r.JI ~\~ y' Js- Jp o~ ~",b ~I \.a r~
~ .r.JI~\~ y' Js- J pIJ ~I~' W c..,r.J ~ .;r.)~ J.,J ~J . JI.,r.\ ~~ ~\)..\ 0J~ ilil.d\ J:SJI
J.,r---d' W ~I c.~ ili-oi O~ J!",b ..:r J . ilil.dl ~I j,~"-i ~,~iC~~ J.,J l..4!i~ w' .~~ ftl ~ J
~\ ~ 4l)w ~ . as'? ~\,jy. r~ ~, ~~.r.JI&~J "abstract data types" Ulhl\ ~\,j~1 t.\ji Js­

~L:J J d'~ J ~\.r.J\~ ~I Js- ~ to..l.till ~)J\ ~ J . ~ .r.JI~\~ y\ Js- Jp ~fi ~~"clustering"
.I.;; l.." 'W-r::-' ~

D66 Alexandria Engineering Journal, Vol. 38, No. 3, May 1999

