THE STOCHASTIC MATHIEU EQUATION UNDER STOCHASTIC COMBINED EXCITATIONS

Magdy A. El-Tawil* and Ahmed M. Ebady**

\author{

* Cairo University, Faculty of Engineering, Engineering Mathematics Department, Giza, EGYPT ** Menoufia University, Faculty of Engineering, Basic Sciences Department, Shibeen El-Kom, EGYPT.
}

Abstract

In this paper, a weakly time variant coefficients Mathieu equation under stochastic combined excitations is studied. The WHEP technique is used which proved noticeable efficiency in solving such problems. The technique is a combination of the Wiener-Hermite expansion and the multiple time scale perturbation technique. The Gaussian solution part of the solution process is obtained up to the order of ϵ^{2} and valid for t in the order of $\left(1 / \epsilon^{2}\right)$. The ensemble average and the variance of the solution process can then be evaluated in terms of the obtained kernels.

Keywords: Wiener-Hermite-Expansion, WHEP technique, Stochastic Mathieu equation, Stochastic D.E., Multiple Time Scale Perturbation method.

INTRODUCTION

TThe Mathieu equation is one of the famous equations of dynamics [1]. The deterministic equation had been solved using the perturbation techniques [2]. In this paper, a stochastic force combined with other deterministic forces are considered as combined excitations for the Mathieu equation. In this case, the solution process is of stochastic nature and some statistical moments are needed to describe the behaviour of the process.

The technique used in this paper is the WHEP technique [3] which is composed of the application of Wiener-Hermite expansion (WHE) [4] and followed by a perturbation technique to solve the obtained deterministic equations. The WHEP technique was used to solve a Duffing Oscillator with a stochastic excitation [3], a stochastic Van der Pol equation [5] and a parametrically forced Duffing oscillators with a stochastic external force [6]. The method is successful in obtainig an approximate solution via the Gaussian part
of the solution process to the requied order of validity. The method can obtain a better approximation through using terms which represent the non-Gaussian solution part and increasing the order of the expansion.

In this paper, the multiple time scale perturbation technique [2] is used to prevent the secular terms appearing when the direct expansion is used. It is quite enough to illustrate the application of the method up to the order of ϵ^{2} and time validity in the order of $1 / \epsilon^{2}$. To modify the approximation used in this paper, one should use terms of non-Gaussianity and increase the time validity of the expansion used. The approximate solution is obtained as a function of time t and the different parameters of the problem. General expressions are obtained for the ensemble average and variance of the solution proess in terms of the computed deterministic kernels.

THE MATHIEU EQUATION
The general form of the Mathieu equation under combined load is
$\ddot{u}+\Omega^{2} u=\in\left[-2 \eta \dot{u}+2 \mu \Omega^{2} u \cos \omega t+A n(t ; q)\right]$
where ϵ : a smail perturbation parameter, | $\epsilon \mid<1$
Ω : The mode frequency
ω : The excitation frequency
η : The damping factor
μ : the parametric load parameter
A $n(t ; q)$: scaled white noise which has zero average and Dirac-delta function as correlation. " q " belongs to an arbitrary triple probability space.

APPLYING THE WHEP TECHNIQUE

The general algorithm of WHEP technique is as follows:
a) Using Wiener-Hermite expansion to obtain a stochastic D.E. in terms of Wiener-Hermite stochastic polynomials [7].
b) Taking the suitable ensemble averages to obtain deterministic equations in the deterministic kernels of the expansion.
c) Solving the deterministic simultaneous equations using a suitable perturbation technique.
d) Computing the ensemble average and variance or any required statistics of the solution process.
In this paper, the Gaussian solution part is computed. In this case, the W-H-E takes the following form:
$u(t)=u^{(0)}(t)+\int_{-\infty}^{\infty} u^{(1)}\left(t, t_{1}\right) H^{(1)}\left(t_{1}\right) d t_{1}$
where $u^{(0)}(t)$ and $u^{(1)}\left(t, t_{1}\right)$ are deterministic kernels should be computed. It is known that
$n(t ; q)=H^{(1)}(t)$
$E H^{(1)}(t)=0$
and $E H^{(1)}(t) \cdot H^{(1)}(\mathrm{s})=\delta(\mathrm{t}-\mathrm{s})$
where $H^{(0)}(-)$ is the Wiener-Hermite Polynomial of order (i). The properties of these orthogonal functions can be found in [3,8], for example.
Substituting from Equation 2 in Equation 1 , the following stochastic D.E. is obtained:

$$
\begin{align*}
& \mathrm{Lu}^{(0)}+\int_{-\infty}^{\infty} \mathrm{Lu}^{(1)}\left(\mathrm{t}, \mathrm{t}_{1}\right) \mathrm{H}^{(1)}\left(\mathrm{t}_{1}\right) \mathrm{dt}_{1}= \\
& \quad \in\left[-2 \eta \dot{\mathrm{u}}^{(0)}-2 \eta \int_{-\infty}^{\infty} \dot{\mathrm{u}}^{(1)} \mathrm{H}^{(1)}\left(\mathrm{t}, \mathrm{t}_{1}\right) \mathrm{dt}_{1}\right. \\
& \quad+2 \mu \Omega^{2} \mathrm{u}^{(0)} \cdot \cos \omega \mathrm{t} \\
& \left.\quad+2 \mu \Omega^{2} \cos \omega \mathrm{t} \int_{-\infty}^{\infty} \mathrm{u}^{(1)} \mathrm{H}^{(1)} \mathrm{dt}_{1}+\mathrm{AH}^{(1)}(\mathrm{t})\right] \tag{6}
\end{align*}
$$

Where

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}}+\Omega^{2} \tag{7}
\end{equation*}
$$

Taking the ensemble average of Equation 6, we get

$$
\begin{align*}
& \mathrm{L} \mathrm{u}^{(0)}(\mathrm{t})=\in\left[-2 \eta \dot{\mathrm{u}}^{(0)}(\mathrm{t})+2 \mu \Omega^{2} \mathrm{u}^{(0)}(\mathrm{t}) .\right. \\
& \cos \omega \mathrm{t}] \tag{8}
\end{align*}
$$

Multiplying Equation 6 by $\mathrm{H}^{(1)}\left(\mathrm{t}_{2}\right)$ and then taking average, we obtain

$$
\begin{align*}
\mathrm{L} u^{(1)}\left(\mathrm{t}, \mathrm{t}_{1}\right) & =\in\left[-2 \eta \dot{\mathrm{u}}^{(1)}\left(\mathrm{t}, \mathrm{t}_{1}\right)+2 \mu \Omega^{2}\right. \\
& \left.\cos \omega \mathrm{t} \cdot \mathrm{u}^{(1)}\left(\mathrm{t}, \mathrm{t}_{1}\right)+\mathrm{A} \delta\left(\mathrm{t}-\mathrm{t}_{1}\right)\right] \tag{9}
\end{align*}
$$

We have obtained two simultaneous deterministic equations in the deterministic kernels $u^{(0)}(t)$ and $u^{(1)}\left(t, t_{1}\right)$. The WHEP technique uses the perturbation method to solve Equations 8 and 9. The Appendix proves the existence of the solution of Equation 1 [or Equations 8 or 9] as a power series in ϵ. The direct expansion method fails since secular terms are obtained which cause instability of the solution. To prevent
these secular terms, the multiple time scale perturbation is used as the following:

$$
\begin{align*}
& \mathrm{u}^{(0)}(\mathrm{t} ; \in)=\mathrm{u}_{0}^{(0)}\left(\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}\right) \\
& +\in \mathrm{u}_{1}^{(0)}\left(\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}\right)+\epsilon^{2} \mathrm{u}_{2}^{(0)}\left(\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}\right) \tag{10}
\end{align*}
$$

where
$T_{i}=\epsilon^{i} t \quad, \quad i=0,1,2$,
$u^{(1)}\left(\mathrm{t}, \mathrm{t}_{1} ; \epsilon\right)=\mathrm{u}_{0}^{(1)}\left(\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{t}_{1}\right)+\in \mathrm{u}_{1}^{(1)}\left(\mathrm{T}_{0}, \mathrm{~T}_{1}\right.$,
$\left.T_{2}, t_{1}\right)+\epsilon^{2} \mathbf{u}_{2}^{(1)}\left(T_{0}, T_{1}, T_{2}, t_{1}\right)$
It should be noted that using $\mathrm{T}_{0}, \mathrm{~T}_{1}$ and T_{2} only as time scales, make the expansion valid up to $2^{\text {nd }}$ approximation only, i.e

$$
\begin{equation*}
u^{(0)}=u_{0}^{(0)}+\in u_{1}^{(0)} \tag{13}
\end{equation*}
$$

The use of T_{2} insures that the secular terms in $u_{2}^{(0)}$ are removed which enables the computations of the general functions in $\mathrm{u}_{1}^{(0)}$. We can prove that
$\frac{\mathrm{d}}{\mathrm{dt}}=\frac{\partial}{\partial \mathrm{T}_{0}}+\epsilon \frac{\partial}{\partial \mathrm{T}_{1}}+\epsilon^{2} \frac{\partial}{\partial \mathrm{~T}_{2}}$
or $\frac{d}{d t}=D_{0}+\epsilon D_{1}+\epsilon^{2} D_{2}$
Also,

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}}=\mathrm{D}_{0}^{2}+2 \in \mathrm{D}_{0} \mathrm{D}_{1}+\epsilon^{2}\left(\mathrm{D}_{1}^{2}+2 \mathrm{D}_{0} \mathrm{D}_{2}\right) \tag{16}
\end{equation*}
$$

Accordingly;

$$
\begin{align*}
\frac{d u^{(0)}}{\mathrm{dt}}= & \mathrm{D}_{0}\left(\mathrm{u}_{0}^{(0)}+\epsilon \mathrm{u}_{1}^{(0)}+\epsilon^{2} \mathrm{u}_{2}^{(0)}\right) \\
& +\epsilon \mathrm{D}_{1}\left(\mathrm{u}_{0}^{(0)}+\epsilon \mathrm{u}_{1}^{(0)}+\epsilon^{2} \mathrm{u}_{2}^{(0)}\right) \tag{17}\\
& +\epsilon^{2} \mathrm{D}_{2}\left(\mathrm{u}_{0}^{(0)}+\epsilon \mathrm{u}_{1}^{(0)}+\epsilon^{2} \mathrm{u}_{2}^{(0)}\right)
\end{align*}
$$

or equivalently;

$$
\begin{align*}
& \dot{\mathrm{u}}^{(0)}=\mathrm{D}_{0} \mathrm{u}_{0}^{(0)}+\epsilon\left(\mathrm{D}_{0} \mathrm{u}_{1}^{(0)}+\mathrm{D}_{1} \mathrm{u}_{0}^{(0)}\right) \\
& +\epsilon^{2}\left(\mathrm{D}_{0} \mathrm{u}_{2}^{(0)}+\mathrm{D}_{1} \mathrm{u}_{1}^{(0)}+\mathrm{D}_{2} \mathrm{u}_{0}^{(0)}\right)+\mathrm{O}\left(\epsilon^{3}\right) \tag{18}
\end{align*}
$$

Also, we can prove similarly that

$$
\begin{align*}
\mathrm{u}^{(0)}= & \mathrm{D}_{0}^{2} \mathrm{u}_{0}^{(0)}+\epsilon\left(2 \mathrm{D}_{0} \mathrm{D}_{1} \mathrm{u}_{0}^{(0)}+\mathrm{D}_{0}^{2} \mathrm{u}_{1}^{(0)}\right) \\
& +\epsilon^{2}\left(\begin{array}{l}
\mathrm{D}_{1}^{2}+2 \mathrm{D}_{0} \mathrm{D}_{2} \mathrm{u}_{0}^{(0)} \\
\\
+2 \mathrm{D}_{0} \mathrm{D}_{1} \mathrm{u}_{1}^{(0)}+\mathrm{D}_{0}^{2} \mathrm{u}_{2}^{(0)}
\end{array}\right) \tag{19}
\end{align*}
$$

Substituting Equations 18 and 19 into Equation 8 and equating the equal powers of \in in both sides of the equation, we obtain the following results:
$\mathrm{D}_{0}^{2} \mathbf{u}_{0}^{(0)}+\Omega^{2} \mathbf{u}_{0}^{(0)}=0$,
$D_{0}^{2} u_{1}^{(0)}+\Omega^{2} u_{1}^{(0)}=-2 D_{0} D_{1} u_{0}^{(0)}$

$$
\begin{equation*}
-2 \eta \mathrm{D}_{0} \mathrm{u}_{0}^{(0)}+2 \mu \Omega^{2} \mathrm{u}_{0}^{(0)} \cos \omega \mathrm{t} \tag{21}
\end{equation*}
$$

$$
D_{0}^{2} \mathbf{u}_{2}^{(0)}+\Omega^{2} \mathbf{u}_{2}^{(0)}=-D_{1}^{2} \mathbf{u}_{0}^{(0)}-2 D_{0} D_{2} \mathbf{u}_{0}^{(0)}
$$

$$
-2 \eta \mathrm{D}_{1} \mathrm{u}_{0}^{(0)}-2 \mathrm{D}_{0} \mathrm{D}_{1} \mathrm{u}_{1}^{(0)}
$$

$$
-2 \eta D_{0} u_{1}^{(0)}+2 \mu \Omega^{2} u_{1}^{(0)} \cos \omega t
$$

Also, similar equations are obtained for $\mathrm{u}_{0}^{(1)}, \mathrm{u}_{1}^{(1)}$ and $\mathrm{u}_{2}^{(1)}$ as the following:

THE SOLUTION PROCEDURE

Solving Equation 20, the general solution is
$\mathrm{u}_{0}^{(0)}=\mathrm{A}_{0}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right) \mathrm{e}^{\mathrm{i} \Omega \mathrm{T}_{0}}+\overline{\mathrm{A}}_{0} \mathrm{e}^{-\mathrm{i} \Omega \mathrm{T}_{0}}$,
where $\overline{\mathrm{A}}_{0}$, is the complex conjugate of A_{0}.
To obtain A_{0}, we substitute Equation 26 in the r.h.s. of Equation 21, i.e.

$$
\begin{align*}
& D_{0}^{2} u_{0}^{(1)}+\Omega^{2} u_{0}^{(1)}=0 \text {, } \tag{23}\\
& D_{0}^{2} u_{1}^{(1)}+\Omega^{2} u_{1}^{(1)}=A \delta\left(t-t_{1}\right) \\
& -2 \mathrm{D}_{0} \mathrm{D}_{1} \mathrm{u}_{0}^{(1)}-2 \eta \mathrm{D}_{0} \mathrm{u}_{0}^{(1)} \\
& +2 \mu \Omega^{2} u_{0}^{(1)} \cos \omega t \text {, } \\
& D_{0}^{2} u_{2}^{(1)}+\Omega^{2} u_{2}^{(1)}=-D_{1}^{2} u_{0}^{(1)}-2 D_{0} D_{2} u_{0}^{(1)} \\
& -2 \eta D_{1} u_{0}^{(1)}-2 D_{0} D_{1} u_{1}^{(1)} \tag{25}\\
& -2 \eta D_{0} u_{1}^{(1)}+2 \mu \Omega^{2} u_{1}^{(1)} \cos \omega t \text {. }
\end{align*}
$$

$$
\begin{align*}
D_{0}^{2} u_{1}^{(0)}+\Omega^{2} u_{1}^{(0)}= & -2 \frac{\partial^{2} A_{0}}{\partial \mathrm{~T}_{0} \partial \mathrm{~T}_{1}} e^{i \Omega \mathrm{~T}_{0}} \\
& -2 \frac{\partial^{2} \bar{A}_{0}}{\partial \mathrm{~T}_{0} \partial \mathrm{~T}_{1}} e^{-i \Omega \mathrm{~T}_{0}} \\
& -2 \eta \frac{\partial}{\partial \mathrm{~T}_{0}} \mathrm{~A}_{0} \mathrm{e}^{i \Omega \mathrm{~T}_{0}}-2 \eta \frac{\partial}{\partial \mathrm{~T}_{0}} \overline{\mathrm{~A}}_{0} \mathrm{e}^{-i \Omega T_{0}} \\
& \left.+2 \mu \Omega^{2} \cos \omega t\left(\mathrm{~A}_{0} e^{i \Omega T_{0}}+\overline{\mathrm{A}}_{0} e^{-i \Omega T_{0}}\right) .\right) \tag{27}
\end{align*}
$$

To prevent secular terms ($\mathrm{T}^{0} . \mathrm{e}^{ \pm i \Omega \mathrm{~T}_{0}}$) we should have:

$$
\begin{equation*}
\frac{\partial \mathrm{A}_{0}}{\partial \mathrm{~T}_{1}}+\eta \mathrm{A}_{0}=0, \tag{28}
\end{equation*}
$$

which has the general solution:
$\mathrm{A}_{0}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=\alpha\left(\mathrm{T}_{2}\right) \mathrm{e}^{-\eta \mathrm{T}_{1}}$.
The general solution of Equation 20 is then taking the following form:
$\mathrm{u}_{0}^{(0)}=\alpha\left(\mathrm{T}_{2}\right) \mathrm{e}^{-\eta \mathrm{T}_{\mathrm{I}}} \mathrm{e}^{\mathrm{i} \Omega \mathrm{T}_{0}}+$ c.c.,
where c.c. denotes complex conjugate.
Solving Equation 21 which has the following form.

$$
\begin{align*}
& D_{0}^{2} u_{1}^{(0)}+\Omega^{2} u_{1}^{(0)} \\
& =2 \mu \Omega^{2} \alpha\left(\mathrm{~T}_{2}\right) \mathrm{e}^{-\eta \mathrm{T}_{1}} \mathrm{e}^{i \Omega \mathrm{~T}_{0}} \cos \omega \mathrm{~T}_{0} \\
& +2 \mu \Omega^{2} \bar{\alpha}\left(\mathrm{~T}_{2}\right) \mathrm{e}^{-\eta \mathrm{T}_{1}} \mathrm{e}^{-\mathrm{i} \Omega \mathrm{~T}_{0}} \cos \omega \mathrm{~T}_{0} . \tag{31}
\end{align*}
$$

The general solution of Equation 31 is

$$
\begin{align*}
u_{1}^{(0)}= & A_{1} e^{i \Omega T_{0}}+B_{1} e^{i \Omega T_{0}} \cos \omega T_{0} \\
& +c_{1} e^{i \Omega T_{0}} \sin \omega T_{0}+c . c . \tag{32}
\end{align*}
$$

where A, B, and C, are functions of T_{1} and T_{2}. To obtain A_{1}, we substitute in the r.h.s. of Equation 22 and by preventing the secular terms $\mathrm{T}_{0} \mathrm{e}^{ \pm \mathrm{i} \Omega \mathrm{T}_{0}}$, we obtain the following equation:
$\frac{\partial \mathrm{A}_{1}}{\partial \mathrm{~T}_{1}}+\eta \mathrm{A}_{1}=\mathrm{e}^{-\eta \mathrm{T}_{1}}\left(-\frac{\partial \alpha\left(\mathrm{T}_{2}\right)}{\partial \mathrm{T}_{2}}-\mathrm{i} \frac{\eta^{2}}{2 \Omega} \alpha\left(\mathrm{~T}_{2}\right)\right)$
To solve Equation 33 let

$$
\begin{equation*}
A_{1}=F\left(T_{1}\right) \cdot G\left(T_{2}\right) \tag{34}
\end{equation*}
$$

The technique of separation of variables succeeds to evaluate T_{1} as the following:

$$
\begin{equation*}
\mathrm{A}_{1}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=\left(-\frac{\partial \alpha\left(\mathrm{T}_{2}\right)}{\partial \mathrm{T}_{2}}-\mathrm{i} \frac{\eta^{2}}{2 \Omega} \alpha\left(\mathrm{~T}_{2}\right)\right) \mathrm{T}_{1} \mathrm{e}^{-\eta \cdot \mathrm{T}_{1}} \tag{35}
\end{equation*}
$$

The final form of $u_{1}{ }^{(0)}$ is

$$
\begin{align*}
u_{1}^{(0)}= & A_{1}\left(T_{1}, T_{2}\right) e^{i \Omega T_{0}}+B_{1} e^{i \Omega T_{0}} \cos \omega T_{0} \\
& +C_{1} e^{i \Omega T_{0}} \sin \omega T_{0}+\text { c.c. } \tag{36}
\end{align*}
$$

Finally ;
$\mathrm{u}^{(0)}=\mathrm{u}_{0}^{(0)}+\epsilon \mathrm{u}_{1}^{(0)}+0\left(\epsilon^{2}\right)$,
and the expansion is valid for t up to $\mathrm{O}\left(\frac{1}{\epsilon^{2}}\right)$.
To modify the expansion, $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}$ and T_{3} are used as time scales and $u_{0}{ }^{(0)}, u_{1}{ }^{(0)}$, and $u_{2}{ }^{(0)}$ are obtained such that no secular terms exist in the kernels up to $u_{3}{ }^{(0)}$. In this case,
$\mathbf{u}^{(0)}=\mathbf{u}_{0}^{(0)}+\epsilon \mathbf{u}_{1}^{(0)}+\epsilon^{2} \mathbf{u}_{2}^{(0)}+0\left(\epsilon^{3}\right)$
and the validity of time t is up to $O\left(\frac{1}{\epsilon^{3}}\right)$.
To get the functions B_{1} and C_{1} in Equation 36, we substitute from Equation 36 into Equation 21. Equating the similar terms in both sides of the equation we obtain the following results

$$
\mathrm{B}_{1}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=\frac{\left[2 \mu \Omega^{2}-\left(\Omega^{2}+\omega^{2}\right)\right] 2 \mu \Omega^{2} \alpha\left(\mathrm{~T}_{2}\right) \mathrm{e}^{-\eta \mathrm{T}_{1}}}{\psi}
$$

and
。

>)

$$
=
$$

\qquad

$\mathrm{C}_{1}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=\frac{4 \mathrm{i} \omega \Omega^{3} \mu \cdot \alpha\left(\mathrm{~T}_{2}\right) \cdot \mathrm{e}^{-\eta \mathrm{T}_{1}}}{\psi}$,
where
$\psi=\left[2 \mu \Omega^{2}-\left(\omega^{2}+\Omega^{2}\right)-2 \mathrm{i} \omega \Omega\right]\left[2 \mu \Omega^{2}\right.$
$\left.-\left(\Omega^{2}+\omega^{2}\right)+2 i \omega \Omega\right]$
The procedure is repeated when solving Equations 23 to 25 for $\mathrm{u}_{0}^{(1)}, \mathrm{u}_{1}^{(1)}$ and $\mathrm{u}_{2}^{(1)}$. The final results are:
$u_{0}^{(1)}=\beta\left(\mathrm{T}_{2}\right) \mathrm{e}^{-\eta \mathrm{T}_{1}} \mathrm{e}^{i \Omega \mathrm{~T}_{0}}+$ c.c.,
$\mathrm{u}_{1}^{(1)}=\mathrm{AA}_{2}+\mathrm{B}_{2} \mathrm{e}^{\mathrm{i} \Omega \mathrm{T}_{0}}+\mathrm{C}_{2} \mathrm{e}^{\mathrm{i} \Omega \mathrm{T}_{0}} \cos \omega \mathrm{~T}_{0}$ $+\mathrm{F}_{2} \mathrm{e}^{\mathrm{i} \Omega \mathrm{T}_{0}} \sin \omega \mathrm{~T}_{0}+$ c.c.,
where
$\mathrm{A}_{2}\left(\mathrm{~T}_{0}, \mathrm{~T}_{1}\right)=\frac{\sin \Omega\left(\mathrm{T}_{0}-\mathrm{T}_{1}\right)}{\Omega}$,
$B_{2}\left(T_{1}, T_{2}\right)=\left(-\frac{\partial \beta\left(T_{2}\right)}{\partial T_{2}}-i \frac{\mu^{2}}{2 \Omega} \beta\left(\mathrm{~T}_{2}\right)\right) \mathrm{T}_{1} \mathrm{e}^{-\eta \mathrm{T}_{1}}$,
$C_{2}\left(T_{1}, T_{2}\right)=\frac{\left[2 \mu \Omega^{2}-\left(\Omega^{2}+\omega^{2}\right] 2 \mu \Omega^{2} \beta\left(\mathrm{~T}_{2}\right) \mathrm{e}^{-\eta \mathrm{T}_{1}}\right.}{\psi}$,
$\mathrm{F}_{2}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=\frac{4 \mathrm{i} \omega \Omega^{3} \mu \cdot \beta\left(\mathrm{~T}_{2}\right) \cdot \mathrm{e}^{-\eta \mathrm{T}_{1}}}{\psi}$.

STATISTICAL MOMENTS OF THE SOLUTION PROCESS

The average of u is computed using the following:

$$
\begin{align*}
\mathrm{Eu} & =\mathbf{u}^{(0)}(\mathrm{t}) \\
& =\mathrm{u}_{0}^{(0)}+\in \mathrm{u}_{1}^{(0)} . \tag{48}
\end{align*}
$$

The variance is computed using the following:

$$
\begin{align*}
\text { Var } u & =E(u-E u)^{2} \\
& =\int_{-\infty}^{\infty}\left(u_{0}^{(1)}\right)^{2} d t_{1}+2 \in \int_{-\infty}^{\infty} u_{0}^{(1)} \cdot \mathbf{u}_{1}^{(1)} d t_{1} . \tag{49}
\end{align*}
$$

CONCLUSIONS

The WHEP technique proves that it is a very efficient algorithm, which produces an approximate modifiable solution to the problems of linear and nonlinear dynamics with random excitation and/or random coefficients. The weakly time variant coefficients Mathieu equation can be solved approximately using the previously mentioned technique through the application of Wiener-Hermite expansion (W-H-E) and the multiple time scale perturbation (MTSP) technique. The solution can be modified using additional terms in both the W-H-E part and/or the perturbation part.

APPENDIX

Let Equation 1 be put in the form:

$$
\begin{align*}
& \mathrm{L} u=\epsilon[\alpha \dot{u}+\beta(\mathrm{t}) \mathrm{u}+\gamma(\mathrm{t})] \tag{A-1}\\
& \text { At } \in=0 \quad, \quad \mathrm{u}=\mathrm{u}_{0} \tag{A-2}
\end{align*}
$$

Using successive approximations,

$$
\begin{equation*}
\mathrm{Lu} \mathrm{u}^{(1)}=\in\left[\alpha \dot{\mathrm{u}}_{0}+\beta(\mathrm{t}) \mathrm{u}_{0}+\gamma(\mathrm{t})\right] \tag{A-3}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
\mathrm{u}^{(1)}=\mathrm{u}_{0}+\in \mathrm{u}_{1} \tag{A-4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{u}_{1}=\alpha \mathrm{L}^{-1} \dot{\mathrm{u}}_{0}+\mathrm{L}^{-1} \beta(\mathrm{t}) \mathrm{u}_{0}+\mathrm{L}^{-1} \gamma(\mathrm{t}) \tag{A-5}
\end{equation*}
$$

Repeating

$$
\begin{align*}
\mathbf{u}^{(2)} & \left.=\mathbf{u}_{0}+\epsilon \mathrm{L}^{-1} \mid \alpha \dot{\mathrm{u}}^{(1)}+\beta(\mathrm{t}) \mathrm{u}^{(1)}+\gamma(\mathrm{t})\right] \tag{A-6}\\
& =\mathrm{u}_{0}+\epsilon \mathrm{u}_{1}+\epsilon^{2} \mathrm{u}_{2}
\end{align*}
$$

where
$\mathrm{u}_{2}=\alpha \mathrm{L}^{-1} \dot{\mathrm{u}}_{1}+\mathrm{L}^{-1} \beta(\mathrm{t}) \mathrm{u}_{1}$.
Generally,
$u_{i}=u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}+\ldots+\epsilon^{i} u_{i} ; i \geq 1$.
The solution

$$
\begin{equation*}
u=\lim _{i \rightarrow \infty} u^{(i)}=\sum_{i=0}^{\infty} \epsilon^{i} u_{i} . \tag{A-8}
\end{equation*}
$$

REFERENCES

1. A.H. Nayfeh, "Perturbation Methods", John Wiley (1973).
2. A.H. Nayfeh and D.T. Mook "Nonlinear Oscillations, John Wiley (1979).
3. E. Abdel-Gawad and M. El-Tawil, "General Stochastic Oscillatory Systems, Appl. Math. Modelling, Vol. 17, No.6, pp. 329-335, (1993).
4. N. Wiener "Nonlinear Problems in Random theory", Technology Press, MIT, and John Wiley, (1958).
5. M. El-Tawil and A. Ebady, "The Gaussian Solution Part of a Stochastic Van der Pol Equation", Scientific Bulletin (Ain Shams Univ.), Vol. 33, No. 2, pp. 505-517, (1998).
6. M. El-Tawil and G. Mahmoud, "The Solvability of Parametrically Forced Oscillators Using WHEP Technique", Submitted for Publication in Chaos, Solutions and Fractals.
7. T. Imamura W. Meacham and A. Siegel, "Symbolic Calculus of the Wiener Process and Wiener-Hermite Functionals", J. Math. Phys., Vol. 6, pp. 695-706, (1965).
8. G. Gahedi and Ahmadi "Application of WHE to non-Stationary Random Vibration of a Duffing Oscillator", J. Appl. Mech, Vol. 50, pp. 436-442, (1983).

في هذا البحت ت تحل ل لمعادلة ماثيوذات معامل متغير مع الزمن تحت تأثير مجموعة من المؤثرات ، ولقد استخدمدت طريقة التي تح تطبيقها بنجاح في أمثال هذه المعادلات، هذه الطريقةهي جمع لطريقتين معا هما طريقة فينر -هيرمت و طريقة الاضطراب ذات القياسات الزمنية المتعلاة.
تَ حساب الجزء الجاوسيٌن عملية الحل حتى الرتبة الثانية، ومن زم يمكننا حساب متوسط وتباين عملية الحل بدلالة ما حسب من بعض النوال.

