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INTRODUCTION

and overall buckling of elastic thin-
columns are  extensively
ated. With the existing number of
it was found that most of authors
this problem by reducing column-
al stiffness. The results of this method
1 good agreement with the experimental
s for symmetrical case of loading. The
tion of the column stiffness is generally
ed by applying the formula proposed
Winter [1] which is based on the Von
n [2] formula. These formulas are
uced in almost all design Codes ; for
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e aim of this study is to present an
ical model which simulate the behavior
. thin-walled beam-column of non
etrice cross section under
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ig interaction. Effective ones replace
buckled column plate-elements.
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ation through different
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ABSTRACT

In this paper, the interaction between local and overall buckling of
thin-walled columns under different loading is analyzed by means of
the general elastic stability theory. Initial imperfections of the
structure and the residual stresses are taken into consideration, a
numerical solution is suggested in order to determine the behavior of
columns during loading. The validity of the analytical method is
verified by comparing its results with previous experimental work.
The results of many shapes of cross section under different cases of

buckling, Code, Warping

loads are compared with Egyptian code [3]
and AISI [4]. Results of many shapes of

cross-section under different cases of loading
are performed.

THEORETICAL MODEL

Assumptions

Considering a thin-walled element as in
Figure 1, the following assumptions are
adopted:
= Elements are prismatic members.
* Elements are subjected to initial

imperfections (deflections and twist).

= Invariability of the cross section until

reaching ultimate Limit State.

* Thin-walled open cross section is

longitudinally subjected to only normal
stresses; shear stresses caused by twisting

are following the contour direction of the
cross section.

Shear deformations are ignored so that
warping deformation of the cross section

can be calculated by the rule of sectorial
area.

Beam-Columns have variable cross section

properties depending on the acting stresses (effective
Cross section).
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The effective cross section is only used for the
clastic zone.

dispiacements are asswned to be small |

»
g .
[Tl

Figure 1 Thin-Walled cross seciion

GENERALIZED STRESS-STRAIN
RELATIONSHIP
For the arbitrary coordinates S, nand ©
on the cross section, the noimal strain ¢ is
related to the generalized strain [5] (axial
strain &, biaxial curvatures @. and ®, and

warping curvature 0.) by [5]:
8=!’..,+r]¢;~5_‘~b,1- (,']9;”-‘:‘5_’,0+q9;"'\’;8..|l" -I'IE},;” [1,

in which 6. , 0, and 0. are rotation angles of
the cross section about the coordinate axes
%, n and £ respectively. These are related to
the curvatures and axial displacement by:

G,;b=fb;=—vﬂ 3 911'=q),}=u~ and W = £ (2)
Using Equations 1 and 2, Equation 1

may be rewritten as:
e=g,-vn-ul o 6 (3)

Since the stress-strain relation is o = Fg,
the generalized stress-strain relationship can
be presented as:
c=Efe-vn-usi-o 6] (4)

from which the general form of the
equilibrium equations®is presented as:
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Since these differential equilibrium
tions are highly nonlinear, some
olifying assumptions must be adopted

an actual solution procedure is
npted. To simphify equation 5, neglect
“higher order terms containing the
uct of derivatives of displacements,
n take the principal axes for the cross
on coordinates (£,n) and the shear
er S(.,mo) as the pole of the
malized warping (see figure 2).
ation of equilibrium Equation 5,

-S, ©®
Ly V +9_
Iy u +6v
F, (6)
Bl 0 0» M, -VF,,
" M, +uF,,
1 -v

Mzo + "'Fxo - uFm

e equation 6 using the following

(V' - 0" %o ) My - (um’ + 6" mo ) My’ =

ese are the basic equations of elastic

m-columns. If the moments are equally
oth ends, then:

-Pey - Qy[z- L]z/2
ffex+ Q«[z -L]z/2

= Qy[2z- L] /2

t Qc[2z -L] /2 (11)
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" Vmut Mm - 2 vmu Mzo’ - va Mzon = 0
| : aﬂm - (G KT + K ] e.; - Kt ei' + P (Tlﬂ umn_ E:,o Vm") o Mx umn + Mx’ umf

EMy V" + My’ Vin' + Mo’ - (Vi =0 &o + Mo ) My" - (um + 0 mo + %5 ) My

_44
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Fxo =My

Fyo = Mx (7)
Fo=-P , w=¢g

Sx=Sy =8, =l = [,x = [,y =0

Then equation 6 is reduced to :

-EAg,=P
-Elx v'-Elx 6 u'=My +[v-0u]P+0M;-u'(Mz-vM; -
uMy)

Ely u'-Ely 6 v =My - [u+6vV]P-OM,-v (M-vM, -
uM;)

(8)

-ElL, 0" +(GKr+K)8 = [My+(v+10) PJ+V [M,-
(u+€0)P]+MZO'(V+WO)My '{u"'ao)Mx

In the case of elastic section, the
shear center S(Zo,no) can be clearly defined
further. The rotation of the section 6 takes
place with respect to the shear center; thus
Equation 8 can be rewritten in terms of
displacements of the shear center:

um=u'e'r|o a.n.d Vm=V+8’:O (9)

Further, if we neglect all the nonlinear terms
of displacements, and Differentiating the first
two equations twice and the third one once ,
the following equations are obtained:

Bl Vo + P (V" - £ 6") + My" + My 0" + My" 0 + 20’ My’

5 umH! Mm = 2 um" Mzo' N um’ Mzo” = O
'] umﬂ" + P ( umﬂ + T]c, 8") . Myn + Mx BH + Mxﬂ e - 29? Mx'

(10)

where Q, Q, are The lateral distributed
loads acting on the beam-column .

Thus, equation 10 can be rewritten as
following:

Elx V" + P vn" +[P(ex- %)+ Qx(z -L) z /
210"+ Qx[2z -L] & +Qx0= Qy

Ely un + Pun” -[Pley - no)+ Qy [2- L]z /
200" -Qu[2z- L] - Q6=Qx  (12)
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Figure 2 Local and Global axes
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of The Behaviour of Thin-Walled

'+ K )0"- K'0' +(Qx&+Qy
0+ (Qx & + Qymo) 0+ (P (ex
12 / 2) vm"- (P (&y -M0) *+ Qv
Un" - Qx Vm +Q,um = Qxﬂc =
isideration the following initial

ction and twist u, , v, and 6, , where:

'EE sin (nz/L) - uL’]

vV + Qy um

E P v +[P(ex- %)+ Qu(2z -L)2/2]0"
sin (nz/L) - vL"] + [P(ex- &) + Qe (2 - L)z / 2] [Do
Do (2/L) cos (rz/L) + OL'] - Qx [Do sin (nz/1) + oL

AT " -[P( ey - Mo —L)Z/Q]
U+ P un’ | (e._;()e:?;o‘)ﬂ Q. (z - L)z / 2] [Do (22/12) sin (nz/L) - 6L'] + Q

2 - L] [Do (z/1) cos (xz/L) + 6L + Qy [Do sin (nz/L) +0L] (14)

Beam-Column with Non-Symmetrical Cross Section

u,=B,sin(mz/L)
ve=Cosin(nz/L) (13)

60=Dosin(ﬂ Z.)""L) =

Effect of a given distribution of a residual stress .
Effect of local buckling . Three new functions are
Introduced such as uy, .vy , 6 which represent the
displacement of the center of gravity in x and y
directions and the rotation of the principal axes
respectively , so the differential equations are finally

expressed by the form :

+Qx[2z -L] 0 +Qx0= Qy+P[Co
(22/1?) sin (nz/L) - 6L"] - Q« [ 22

0"-Qy[2z -L] 0-Qy0= Qx+P[Bo

D - (G Kr+K+B)O"+{Qeiot Qmo)[22 -L1/2 -K'} 0+ (QuZo* Qy
0+ (P (es - 5) + Qu [z - L12/ 2) v~ (Pley ) +Qylz- L12/2) '~

- Oy o - Qy & + K [OL - D (22/12) sin (n2/L)] - { Qs %+ Qymo)[ 22 - L] /2
}ID. (2/1) cos (z/L) + OL'] - (Qx & + Qy o ) [Do sin (nz/L) +6L] + (P (ex- 5 + Qx[2 - L] 2/

2) [Co (z2/17) sin (nz/L) - vL"] - (P (¢y -no) +Qy[2z- L 12/ 2) [Bo (22/L?) sin (nz/L) - ul’] +
Qx [Co sin (nz/L) + vL] - Qy [Bo sin (nz/L) + ul]

i=o (x2+y2)dA

term B in Equation 14 represents
itribution of the residual stresses to
ernal twist moment. Equations 14 are
sm of three linear inhomogeneous
tial equations with three unknowns
0.

NUMERICAL TREATMENT

finite difference method for the
i of The differential equations is a
1e for the reduction of a continuum
rstem with finite number of degrees of
. The basic concept of the method is
¢ derivatives of functions at a point
: approximated by an algebraic
ion consisting of the value of the
L at that point and at several nearly
Soltis ¢ has extensively discussed this

method. The derivations of a function u
could be expressed by these forms:

1
i = = (Ui+1 — Wi 15
e (ai+1 = ui.i) (15)
g 1 (Ui +1 - 2ui + ui) {16)
i ( )2 i+l i 1-1
nr 1
w'"' = {U.i +2 = 2Ui+; + Ui - W2 ) (17)

2(az)?
1

(82)*
Then, the general differential equations of
the beam-column can be represented in an
algebraic form by replacing the derivatives of
the three equilibrium equations (Equation
14) at each of the pivoted points by the

=

uj

(Uis2 = 4Uis1 + 6u1 - 4ui+uiz) (18)

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999 C 83
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appropriate central difference quantities Viz + C1Viq + C2Vi+ CaVin +Virz +d) By
(Equations 15- 18). 0; + das 0+ = Dy (191

The following system of simultaneous Oz + g1 0y + 8 0 + 8 01 + Oz + € Uiy
algebraic equations is obtained:
ge T u; + ez uj+; + f1 Vi1 + fz vi + f’; Vis1 & Px (19

W.o + a5 Ui +azui+azups +use+b 6 +

bz 6i + ba 0is1 = Cx (19 a)
where:
ai=PAz2-4 a2=6-2P Az2 az=PAzz2 -4
Ely Ely Ely
by =-{ [P (ey - o) +Qy (2z-L)z/2]Az2 - Qy (2-L/2) Az3 } | by =-{ Qy Az* - 2[P (e, - no) +Qy (z-L)z/2]Az2 }
Ely Ely
ba = -{ [P (ev - no) +Qy (z-L)z/2]Az2 + Qy (z-L/2) Az3}
EL,
Cx=Az4Qx +P [Bo 22 sin 1z - u”] - [P(ey - no) + Qy (z-L)z] (Do 22 sin 1z - 61") + Qy (22-L) (Do z cos nz + 61')
Ely L= L 2 L2 L i L
+ Qy ( Do sin nz + O0)}
L
ci=PAz2-4 c2=6-2P Az ca=PAz2-4
Elx Elx Elx
d,={ [P (ex - 2)*Qx (2-L)2/2]Az2 — Qy (2-L/2) Az} | do = { Qx Az* = 2[P (e, - %) + Q, (z-L)z/2]AZ2 }
Ely El
da = { [P (ex - Eo) +Ox (2-L)z/2]Az2 + Qx (2-L/2) Az3 }
Elx
Dx = Az*{Qy +P [Co 22 sin 1z - V1] + [P(ex - £o) + Qx (z-L)z] (Do 22 sin 1z - 6.") - Qx (2z-L) (Do z cos nz + 61)
Elx Lz L 2 L2 L L L
- Qx (Do sin iz + OL)}
L
g1 = - {[(z-L/2)(Qx o+ Quno)/2 - K'/2] Az® +(G K1+ K + B) Az%} - 4
El,
g2= 6 + {2 (G Kr + K + B) Az2+ (QxEo+ Oy o) Az}
El,
g5 = { [(z-L/2)(Qx £o+ Qyno)/2 - K'/2] Az3 -(G Kr + K + B) Az2} - 4
El,
fi = {[P (ex_- £o) + Ox (z-L)z/2]Az2} fo = - {2[P (ex - &o) + Qx (z-L)2/2]Az2 + Qx Az%}
El, El,
fa= {[P (ex-&o) + Ox (z-L)z/2]Az2} e1 = - {[P (ey - o) + Qy (z-L)z/2]Az2}
El, EL,
e2 = {2[P (ey - no) + Oy (2-L)2/2]Az2 + Qy Az%} es = - {[P (ey - no) + Qy (z-L)z/2]A22}
EIl, El,
Px= ﬂ{ﬁBL"-Do 22 sin 1z]+Qx &0 - Qy Mo — 22-L (Qx &+Qy Mo) (6L'+Ds 2 cos nz) -(Qx £o+Qy No) (BL+Do sin nz)
El; L2 L 2 L L L
+ [P(ex - &o) + Qx (2-L)z ] (Co 22 sin xz - v1”") -[P(ey - 1o) + Qy (z-L)z ] (Bo 22 sin 1z - uL”) +
2 L2 L 2 L= L

Qx (Co sin 1z + vi) -Qx (Bo sin mz + u)}
L

C &4 Alexandria Engineering Journal, Vol. 38, No. 3, May 1999



) recognize that the displacements
‘are depending on cross section
e displacements of the Center
and the rotation of the principal
the other hand, cross section
- and displacements are also
- on the occurred displacements.
ns that a direct solution of this

n of The Behaviour of Thin-Walled Beam-Column with Non-Symmetrical Cross Section

system of equations is not possible. For this
reason , a combination of the finite difference
method and the method of successive
approximation is applied.

The method of successive approximation
can be summarized in the following flow
chart given in Figure 3.

u=0 . v=0.6=0

B

;1‘ Calculate u,v,0

:

u=u e=lu-ul
v=v ev=|v-:l
6=6 eo=l0-01

New load

Figure 3

e u , v and 0 are initial values for
own deformation , and (err) is a very
‘control value .

- To enable the realization of this

ior strategy , a computer program is
loped (coded in FORTRAN 77) .

MERICAL MODEL VERIFICATION
n order to verify the simplicity, accuracy
eﬁc:lency of the proposed model for
icting the deformational response of
mns, a number of experimental
mples of Thomasson [7], Loughlan [8],
oz [9, 10], Fahmy [11] and Abo-Tabikh
have been selected, the ultimate load
| deformations were calculated by using

yes ?

Flow chart for the method of successive approximation

the numerical model. The initial imperfection
[13] of L/500 for B,,C, and 1/300 rad for D,
was taken into consideration. The ultimate
load was compared with the ultimate load
calculated by both of Egyptian code and
AISI.

Tables 1 and 2 present the dimensions of
some numerical examples with C [11, 12]
and Z [15] cross section. The typical sections
are shown in Figure 4. Tables 3 and 4 and
Figures 5 and 6 show true relation between
pex and (Pru, Paisi, Pec).
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Figure 4 The Thin-Walled cross section examined theoretically or experimentally

Table 1 Cross Sectional Dimensions

CL L a b o X Fy E Ex
mm min mm mm Mm N/mm?2 N/mm? mim
CL1-1 3040 91.17 240.83 29.66 1.50 330 222700 0.00
CL1-2 3040 91.14 240.46 30.04 1.50 330 222700 0.00
CL1-3 3040 91.11 240.76 29.67 1.50 330 222700 0.00
CL1-4 3040 91.04 240.52 29.72 1.50 330 222700 0.00
CL1-5 3040 91.34 240.34 30.09 1.50 330 222700 0.00
CL2-1 3040 91.18 240.29 29.85 1.50 330 222700 60.00
CL2-2 3040 91.11 240.51 30.22 1.50 330 222700 60.00
CL2-3 3040 91.11 240.43 30.77 1.50 330 222700 60.00
CL3-1 3040 91.18 240.21 30.05 1.50 330 222700 60.00
CL3-2 3040 91.17 240.24 30.41 1.50 330 222700 60.00
CL3-3 3040 91.18 240.39 29.82 1.50 330 222700 100.00
CL4-1 3040 91.19 240.46 30.75 1.50 330 222700 100.00
CL4-2 3040 91.23 240.40 29.94 1.50 330 222700 100.00
CL4-3 3040 91.04 240.36 29.85 1.50 330 222700 100.00
CL4-4 3040 91.17 240.00 30.00 1.50 330 222700 100.00
CL5-1 i 2505 I 80.00 I 220.00 ! 20.00 | 1.50 ‘ 360 204100 ] 0.00
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s sectional dimensions for Z shapes
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2] a b & t Fy E €x ey
s mm mm mm mm N/mm? | N/mm? min mm

0 72.49 108.78 0 2.00 289 222700 0.00 0.00

29 50.95 100.89 15.37 2.01 289 222700 | 0.00 0.00

78 52.37 101.45 15.7 2.03 289 222700 0.00 0.00

0 73.71 101.37 0 2.06 392 222700 0.00 0.00

33 52.53 101.22 15.44 2.06 392 222700 0.00 0.00

78 52.07 101.32 15.60 2.06 392 222700 0.00 0.00

0 74.04 101.47 0 2.06 420 222700 0.00 0.00
33.1 92.25 101.47 15.72 2.03 420 222700 0.00 0.00

78 52.53 101.24 15.52 2.03 420 222700 0.00 0.00

0 73.76 101.75 0 1.93 289 222700 0.00 0.00
31.1 52.22 100.35 15.49 1.96 289 222700 0.00 0.00

80 51.99 101.70 15.04 1.93 289 222700 | 0.00 0.00

‘Evaluation of C cross shapes results
3
= 5 Pri / Pex o Prai / Pasi i Pri / Pec

72.100 71.25 1.012 74.320 0.970 74.610 0.966
53.428 58.25 0.917 57.970 0.922 57.580 0.928
41.072 46.5 0.883 46.560 0.882 47.110 0.872
33.185 36.40 0.912 37.890 0.876 38.360 0.865
70.132 73.10 0.959 75.300 0.931 75.700 0.926
41.490 48.40 0.857 47.800 0.868 48.200 0.861
43.000 48.00 0.896 48.670 0.884 48.830 0.881
55.488 63.30 0.877 59.450 0.933 59.300 0.936
38.639 41.70 0,927 41.840 0.923 41.330 0.935
31.024 28.60 1.085 34.510 0.899 34.450 0.901
47.932 53.25 0.900 51.310 0.934 51.020 0.939
41.264 46.50 0.887 44.240 0.933 43.670 0.945
39.000 43.30 0.901 42.740 0.912 42.890 0.909
34.102 36.60 0.932 37.110 0.919 37.270 0.915
26.339 27.20 0.968 29.840 0.883 31.640 0.832
8453 | 8220 | 1028 89.80 0941 | 90.10 0.938

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999
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Table 4 Evaluation of Z Shapes Results

.

CL Pk;l; i;:qx Pru/Pex thﬁ'l PrufPast iilc Pru/Pec
Z1 74.556 84.551 0.882 88.996 0.838 85.936 0.868
Z2 110.068 99.326 1.108 109.254 1.007 108.793 | 1.012
Z3 137.536 142.441 0.966 143.226 0.960 140.577 | 0.978
Z4 94,176 06.83 0.882 105.948 0.889 103.201 | 0.913
Z5 135.182 29.100 1.047 23.116 1.098 126.059 | 1.072
Z6__ | 162.061 | 164.612 | 0.985 65.554_| 0.979 | 160.197 | 1.012
Z7 83.091 88.996 0.934 89.86 0.925 87.211 0.953
Z8 118.946 | 115.218 | 1.032 107.272 | 1.109 109.578 | 1.085
Z9 141.264 | 129.041 | 1.095 132.18 1.069 134.299 | 1.052
Z10__| 49.050 44.498 1.102__| 50.031 0.980 51.404 ] 0.954
Z11 | 68.376 59.596 1.147 | 57.604 1.187 67.895 | 1.007
Z12_| 71.417 66.747 1.070__| 65.433 1.091 69.847 | 1.022
Figure 4 presents the relation between
and Pry. It is obvious that the variati
between the results obtained from the mo
& and the results obtained experimentally
® exceeds 12 %.
®

0 10 20 30 40 50 60 70 80 90

rfrryvryrirrrrrLerT

Pex KN

Figure 5 Relation between Pex and Pru
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Figure 6 Relation between Pru and Codes
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Figure 5 presents the relation be
Pry and (AISI, EC). It is obvious that t
variation between the results obtained fro
the model and the results obtaint
experimentally not exceeds 16 %. |

From the above mentioned comparati

present model is verified. It was found alf
that the model results are in
concordance with both AISI and Eg
Code.

SYSTEMATIC APPLICATION

previous comparative study encouraged
author to generate some applications. Th
results of these applications could be used
designing and manufacturing the thin-wall
cross section .

Local buckling study for C section

In cold formed steel members [14
individual elements are usually so thin wit
respect to their width. These thin element
may be buckled locally, at stress level less
than the yield point if, they are subjected
compression, shear, bending. Local buckling
of individual elements of steel sections has
been one of the major design criteria . Iti
well known that steel element will not fai
when the critical local buckling stress Fe



alation of The m

by Equation 20 is reached. The
t will continue to carry additional load
ans of the redistribution of stress after
o occurs. The stress distribution
form until reaching the critical local
ng stress F. of the element. Then the
it starts to buckle and the portion of
st buckling load of the center strip
to the edge portion of the element.
edistribution of stress continues until
tress at the edge of the element reaches
eld point of steel and then the elements
s to fail.

v

Figure 7

From Figure 8, the lib prevents local
ckling in the range of:
20. 87 38 90

Pt

d from Figure 9, it is obvious that the web
s local buckling when :

/t>30orh/t>= o

JE

Table 5 shows the comparison of these limits

with the Egyptian code and the American
code for steel 52.

<b / tr < 20.5 or

Table 5: Limits of h/t

Case Model American Egyptian Euro code
code code
B | o 58.63 45.000 5863
| element \,F e ’f F) . Jﬁ JI'T
Unstifienca | 20370 36921 | 56.921 56.921
element ’F) Jﬁ Fy -J__F}_

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999

2 2

F, =K (20)
12(0-p) w

where

w the length of the element

t the thickness of the element

K= 4 for interior element (stiffened element)

and 0.425 for outer element (unstiffened

element)

The ratio between the length (w) and the
thickness (t) for the individual element
controls the local buckling, the limit value
for this ratio was studied for both columns
with C cross section of steel 52 as shown in
Figure 7.

»

Thin Walled C cross-section

It was found that the model is in good
agreement with the American code and the
Euro code; the difference is less than 8%,
but the difference in comparing with the
Egyptian code limits is about 20%.

1.4
1.2

© o o
2 O o
S R TR |

a

T rrrfJrrrerrerrrr T

0 10 20 30 40 50 60 70 80 90
b/t

Figure 8 Local Buckling of flange
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1.4
1.2

1
0.8
0.6
0.4
0.2 &

0 T T T T Y T
0 10 20 30 40 50 60
hi/t

Local buckling of web

P/ P,
o

L

1

T T 1

Figure 9

Case of Column

The relation between P and & was stud
for three columns with length of 2.00 m a1
different cross sections shown in Figure I
these three columns have the same weight
The relation between P and i was studied |
sections a and b , and the results are plott
in Figure 11.

From Figure 12, the column of (section
a) has low ultimate resistance with big
deflection , while the column with (section
presents the best behavior (ultimate _
resistance and deflection) in comparing wi
the other sections .

The effect of the geometric imperfectic
and the local buckling of the thin columr
section (a and b) is clearly indicated in
(figure 11) respectively in comparing with
theoretical Euler buckling curve of the sa
section , where:

Pe= A n2E
}-2
186mm | Seca |  170mm Secb | _ 170mm Secc
[ ¥
I 72mm L t=1mm 64mm L t=Imm \J164rmn
=Imm ] .
16mm 16mm
r Jr t
186mm t=1lmm 170mm t=1mm
l6mml__¥

h

Figure 10 The Thin-Walled cross sections used in applications

Case of Beam

The relation between Q (t/m’) and 3 was
studied for two beams with length of 6.00 m
and cross sections with the same weight.
Figure 13 presents the loaded beam and the
studied cross sections .

C 90

The effect of the lib could be easily no
from Figure 14, where the beam of the cr
section (b) presents a relatively good behay
in comparing with the beam of the cre
section (a). -
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Ltk

deflection mm

~ The relation between P and A for a column Figure 12 relation between P and 8 for a column with
with C cross-section C cross section

Sec a | Q t/m’ Sec b | Qt/m
Qt{m > A
117 T O
186mm 170mm
6.00m e —— t=lmm
= 16
t=1lmm ! ' mim
v ¢ >
———
63
72mm Fa

Figure 13 He beam loaded by uniform load Q t/m’

0.3

0.25
0.2

P t/m

0.15
0.1

0.05

T O 0 I W O 0 O T 0 O 0 O O

0 20 40 60 80 100
Deflection mm

Figure 14 Relation between P (t/m) and & for a beam with C cross-section
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CONCLUSION
Within  the  indicated scope of
the main conclusions that

emerged from this study may be summarized

as
1,

following:

The predicted load-deformation responses
show satisfactory agreement with the
experimental results. The ultimate load
carrying capacity can be calculated with
an error not exceeding 12 % with respect
to experimental results.

The proposed numerical model is a
powerful tool that could be used as a
means of estimating the accuracy of the
various design procedures, and could also
be used whenever a new type of situation
not covered by simplified methods is
encountered.

The load decrease with (h/t) of the cross
section (h/t = 30) for steel 52 .

The limits for local buckling calculated by
the Egyptian code are relatively
conservative in comparing with the other
codes and with the present model .

The effect of the lib is very important in
increasing the ultimate capacity of the C

section and improving the element
behavior.
NOMENCLATURE

A Cross section area of
element section.

Bo; Cos Do Initial Imperfection in X,y
direction and twist .

E Young’s modulus.

€x, €vo.8x , & Eccentricity of load
measured in x and y
directionatz=0and z = L.

G Shear modulus.

(e T Moment of inertia about x
and y axes and Warping
moment of inertia.

Kr Torsional constant of the
cross section.

K Wagner coefficient.

L Length of the studied
element.

My, My M, Bending moment about x
and y axes and Warping
moment .

M:, M, M. Bending moment about

C 92

P, Pin , Pex,
Pec, Pasi
Tsv,Tw

1 V8
s, Ve By
Um , Vmm
uL, v, 0L
X, YV, 2
XX
Esm, 6
io:no

€, &
G,Gr,sy
D, D, D,
®

FCF
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local axes £ and m an
Local Warping moment .
Column load , Theoretics
Ultimate load
Experimental Ultimate loa

Ultimate load due
Egyptian code and Ultimal
load due to American cod

St Venant  Torsio

moment and  Twisti

moment . '
Displacement of i
centroid in x and
directions and Angle ¢
twist . '

Initial deflection
centroid in x and |
directions and  Initia
twisting angle.
Displacement of the shear
center in x and ¥y
directions.

Deflection in x and ¥y
directions and Twisting
angle due to local buckling.
Local coordinate system
whose origin moves with
the cross section and
whose axes are always
parallel to X,Y,Z axes.
Global coordinate system
fixed in space .

Local coordinate system
fixed to the cross section
and deforming with cross
section.
Distance between shear
center and centroid in X
and y directions.
Axial strain and
strain at centroid.

of the

Normal stress, Residual
Stress and Yield stress.
Curvature about £ and
axes and Warpi
curvature.

Double sectorial area
coordinate. '
Critical  local  buckling

stress.
Effective slenderness ratio,
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