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loads are compared with Egyptian code [3]
and AISI [4]. Results of many shapes of
cross-section under different cases of loading
are performed.

THEORETICAL MODEL
Assumptions

Considering a thin-walled element as in
Figure 1, the following assumptions are
adopted:
• Elements are prismatic members.
• Elements are subjected to initial

imperfections (deflections and twist).
• Invariability of the cross section until

reaching ultimate Limit State.
• Thin-walled open cross section is

longitudinally subjected to only normal
stresses; shear stresses caused by twisting
are following the contour direction of the
cross section.

• Shear deformations are ignored so that
warping deformation of the cross section
can be calculated by the rule of sectorial
area.

• Beam-Columnshavevariablecrosssection
propertiesdependingon the actingstresses(effective
crosssection).

ABSTRACT

Thin-walled, Local buckling, Code, Warping
deformation, Finite difference.

Keywords:

In this paper, the interaction between local and overallbuckling of
thin-walled columns under different loading is analyzed by means of
the general elastic stability theoIY. Initial imperfections of the
structure and the residual stresses are taken into consideration, a
numerical solution is suggested in order to determine the behavior of
columns during loading. The validity of the analytical method is
verified by comparing its results with previous experimental work.
The results of many shapes of cross section under different cases of
loading are studied.
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INTRODUCTION
overall buckling of elastic thin
columns are extensively

vestigated. With the existing number of
dies, it was found that most of authors
ated this problem by reducing column

ral stiffness. The results of this method
ingood agreement with the experimental

ults for symmetrical case of loading. The
uction of the column stiffness is generally

tained by applying the formula proposed
G. Winter [1] which is based on the Von

an [2] formula. These formulas are
troduced in almost all design Codes; for

pIe,the Egyptian Code [3] and AISI [4].
The aim of this study is to present an
yticalmodel which simulate the behavior
a thin-walled beam-column of non

etrical cross section under
etrical cases of loading, taking into

sideration the flexuraljflexural-torsional
cldinginteraction. Effective ones replace

locallybuckled column plate-elements.
. will also be considered under various
ssgradients.
Verification through different
rimentalworks is made and the ultimate
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• The effective cross section is only used for the
clastic zone.

displacements are assumed to be smaU .

I
I
I

...

Figure 1 Tltin-W;.ukd ere.ss sec'ion

GENERALIZED STRESS-STRAIN
RELATIONSHIP

For the arbitrary coorclinates;, 11 and (0

on the cross section, the nO.~malstrain f; is
related to the generalized strain [5] (axial
strain 8", biaxial curvatures l1>~and <1>,.and
warping curvature EI.~') by [5]:

in which 8~ ' 0'1 and O~ are rot ation angles of
the cross section about the coordinate axes
S, T] and ~ respectively. TheSt~are related to
the curvatures and axial displacement by:

Gs'=cI>~=-v" O'l'=q)~=u' and W = f-o (2)
Using Equations 1 and 2. Equation 1

may be rewritten as:

(3)

Since the stress-strain relation is ()~"Eo,
the generalized stress-strain relationship can
be presented as:
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(4)

from which the general form of the
equilibrium equations5 is presented as:
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-EI",8"'+(GKT+K)8'=u'[Mx+(v+TJo)P]+v'[My
(u +1;0)P]+Mzo-(v+TJo)My'-tu +So)Mx'

(7)
Fxo = My'
Fyo = Mx
Fzo= -P w= 80
Sx = Sy = S., =Ixy= I",x= I",y=0

Then equation 6 is reduced to :

In the case of elastic section, the
shear center S(SO,TJo)can be clearly defined
further. The rotation of the section 8 takes
place with respect to the shear center; thus
Equation 8 can be rewritten in terms of
displacements of the shear center:

um=u-8TJo and vm=v+8So (9)

Further, if we neglect all the nonlinear terms
of displacements, and Differentiating the first
two equations twice and the third one once ,
the following equations are obtained:

-EA80=P
-Elx v"-Elx e u"=Mx +[v-eu]p+eMy-u(Mzo-vMy'-
uMx')
Ely u"_Ely 8 v"=My- [u+8v]P-8Mx-v'(Mzo-vMy'
u~ ~

[I 0

= 0 1

o -e

Since these differential equilibrium
equations are highly nonlinear, some
simplifying assumptions must be adopted
before an actual solution procedure is
attempted. To simphify equation 5, neglect
the higher order terms containing the
product of derivatives of displacements,
then take the principal axes for the cross
section coordinates (1;,TJ) and the shear
center 8(1;0'TJo) as the pole of the
normalized warping (see figure 2).
Equation of equilibrium Equation 5,
becomes:

Rewriteequation 6 using the following
relations:

Elx vm"" + P ( vm" - So8") + Mx" + My8" + My" 8 + 28' My'
- um'" Mzo - 2 um" Mzo' - um' Mzo" = 0

Elyurn""+ P ( um" + TJo8") - My" + Mx 8" + Mx" 8 + 28' Mx'

- vm'" Mzo - 2 vm" Mzo' - vm' Mzo" = 0

El",e"" - (G KT+ K ) 8:' - K' 8' + P (TJoum"- So vm") + Mx um" + Mx' um'
+ Myvrn"+ My' vm' + Mzo' - ( Vm - 8 So + TJo) My" - ( Um + 8 TJo+ So) Mx"
- (vm' - 8' So ) My' - ( um' + 8' TJo) Mx' = 0

(10)

These are the basic equations of elastic
am-columns. If the moments are equally
both ends, then:

= - P ey - Qy [ z - L] z / 2
= P ex + Qx [z - L ] z / 2

, = - Qy [2 z - L] / 2
,= Qx[2z - L] / 2 (11)
, = - Qy

= Qx

Mzo'=Mzo"=O

where Qx, Qy are The lateral distributed
loads acting on the beam-column .
Thus, equation 10 can be rewritten as
following:
Elx vm"" + P vm" +[P( ex - ';0 ) + Qx (z - L ) z /
2] 8" + Qx [2z - L] 8' + Qx 8 = Qy
Ely um"" + P um" -[P(ey - TJo)+Qy [ z - L] z /
2]8" -Qy(2 z - L] 8' - Qy 8 = Qx (12)
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Figure 2 Local and Global axes
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Elx Vm""+ P Vm"+[P( ex - ~o) + Qx (z - L) z j 2] 8" + Qx [2z - L] 8' + Qx 8 = Qy +P [Co

(Z2/V) sin (nzjL) _ vL"] + [PI ex - ~o) + Qx (z - L) z j 2] [Do (Z2jV) sin (nzjL) - 8L"] - Qx [2z
_L] [Do (zjL) cos (nzjL) + 8L'] - Qx [Do sin (nzjL) + 8L]

Ely Um""+ P Urn"_[PI ey - Tjo ) + Qy (z - L) z j 2) 8" - Qy [2z - L) 8' - Qy 8 = Qx +P [Bo
(Z2/V) sin (1tzjL) - uL"] - [PI ey - Tjo) + Qy (z - L) z j 2) [Do (Z2jV) sin (1tzjL) - 8L"] + Qy
[2z - L] [Do (zjL) cos (1tzjL) + 81'] + Qy [Do sin (1tzjL) +8L] (14)

( 15)

(17)

(16)
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(13)

" _ 1
Ui - --? (Ui+1- 2Ui + ui·d

(~z)-

, _ 1 (Ui - - Ui+1 - Ui.J)
2M

method. The derivations of a function u
could be expressed by these forms:

,,,,_ 1 (Ui - --4 Ui+2-4ui+l +6UI-4ui I+U"2) (18)
~~ - ~

Then, the general differential equations of

the be~-column can be represented in an
algebraiC form by replacing the derivatives of
the three equilibrium equations (Equation
14) at each of the pivoted points by the

u.'" = _1_ .1 , (u, +2- 2Ui+1+ Ui-I - Ui2 )
2(Mr -

Uo = Bo sin (n z / L)
VO = Co sin (n z / L)
80 = Do sin (n z I'L)

• Effect of a given distribution of a residual stress .
• Effect of local buckling. Three new functions are

Introduced such as UL .VL , 8L which represent the

displacement of the center of gravity in x and y
directions and the rotation of the principal axes

respectively, so the differential equations are finally
ehllressed by the form :

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999

El", 8"" _ (G KT + K + B ) 8" + {(Qx ~o + Qy Tjo )[ 2z - L ] j 2 - K'} 8' + (Qx ~o + Qy
TJo) 8 + (P (ex - ~o) + Qx [z - L] z j 2) Vrn"-(P (ey -Tjo) + Qy [ z - L] z j 2) Urn"-

Qxvm + Qy Urn = Qx Tjo - Qy ~o + K [8L" - Do (Z2jV) sin (1tzjL)] - {(Qx ~o + Qy Tjo)[ 2z - L] j 2
[Do (zjL) cos (1tzjL) + 8L'J - (Qx ~o + Qy Tjo ) [Do sin (7tzjL) + 8L] + (P (ex - ~o) + Qx [z - L] z /

2) [Co (Z2jV) sin (7tzjL) - vL"]- (P (ey -110) + Qy [z - L] z j 2) [Ba (Z2jV) sin (1tzjL) - uL"] +
Qx [Co sin (1tzjL) + vLJ - Qy [Bo sin (1tzjL) + uL]

r =f crI' ( x2 + y2 ) dA

term B in Equation 14 represents
ltribution of the residual stresses to
emal twist moment. Equations 14 are
~m of three linear inhomogeneous
tial equations with three unknowns
8.

• (GKT + K ) 8" - K' 8' + lQx ~o + Qy
. L 1 / 2 8' + (Qx ~o + Qy Tjo ) 8 + (P (ex

2x I z - L 1 z / 2) Vrn"-(P (ey -Tjo) + Qy [
1/2) Um"- Qx Vrn + Qy Urn = Qx Tjo -

NUMERICAL TREATMENT
finite difference method for the
of The differential equations is a

!le for the reduction of a continuum
stem with finite number of degrees of
. The basic concept of the method is

derivatives' of functions at a point

• appro~ated by an algebraic
on conSlsting of the value of the

at. that point and at several nearly
SOUlS6 has extensively discussed this

ntoconsideration the following initial
:tions:

Ideflectionand twist Uo , Vo and 80 , where:
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appropriate central difference quantities
(Equations 15- 18).

(19 h)

The following system of simultaneous
algebraic equations is obtained:

Si-2 + gl Si-I + ~ Si + ~ Si+1 + Si+2 + e[ Ui-l + e2

Uj + e3 Ui+l + fl Viol + f2 Vi + f3 Vi+1 = Px (19 cl

(19 a)

~=P6z2_4
El

b2 =-{ ~ ~z4 - 2[P (ey..:..1lo~ (z-L)z/2]~z2 }
Ely

where:
al = P f1Z2 - 4 a2 = 6 - 2 P 6z2

El El

bl =-{ Ir..kY..:..1lo~y (z-L)z/21~z2 - Qy (z-L/2) ~Z3}
Ely

b3 = -{ [P (ey..:..1lo~ (z-L)z/2]~z2 + Qy (z-L/2) ~Z3 }
El

Cx=6z4{Ox +P [Bo ~ sin 7tZ - UL") - [P(ey - 1']0)+ Oy (z-L)z] (Do g;2 sin 7tZ- 8L") + Oy (2z-L) (Do g; cos 7tZ+ 8L/)
Ely L2 L 2 L2 L L L

+ Oy ( Do sin 7tZ + eLl)
L

C3 = P 6.z2 - 4
Elx

d2 = {..Qx ~Z4 - 2[P (ex...:..£oL±..Qx (z-L)z/2]6.z2}
Elx

Cl = P 6.z2 - 4 C2 = 6 - 2 P f1Z2

Eh Eh
dl={ fEkx - c.ol±Qx (z-L)z/21~z2 - Qx (z-L/2) ~Z3 }

Elx

d3 = { IP (ex~oL!:Qx (z-L)z/2]6z2 + Ox (z-L/21 6z3 }
Elx

Dx = 6z4{Oy +P [Co ~2 sin 7tZ- VL"] + [P(ex - ~o) + Ox (z-L)z] (Do g;2 sin 7tZ - 8L") - Ox (2z-L) (Do ?;.COS 7tZ+ eL')
Elx L2 L 2 L2 L L L

- Ox ( Do sin 7tZ+ 8Ll)
L

gl = - { f(z-L/2)(Ox..£0~.llo)/2 - K'/2] 6.z3 +(Q KT + K + Bl 6z2} - 4
El",

g3 = { [(z-L/2)(Ox..£0~.llo)/2 - K' /2] 6z3 -(Q KT + K + Bl 6z2} - 4
El",

g2= 6 + {2 (Q KT + K + B) f1Z2 + (Ox..£o~.llol 6.z4}
El",

Px= 6z4{K[8L" - Do Z2 sin 7tz]+Ox ~o - Oy 1']0- 2z-L (Ox ~o+Oy 1']0)(8L' +Do g;cos 7tz) -(Ox ~o+Oy 1']0)(8L+ Do sin KZ)

Er,.; L2 L 2 L L L

+ [P(ex - 1;0) + Ox (z-L)z ] (Co Z2 sin 7tZ- VL") -[prey - 1']0)+ Oy (z-L)z ] (Ba Z2 sin 7tZ- UL") +
2 L2 L 2 L2 L

Ox (Co sin 7tZ + VL) -Ox (Bo sin 7tZ+ UL)}
L L

f2 = - {2[P (ex"':"£oL!:....Qx(z-L)z/2]6.z2 + Ox 6.z4}
El",

el = - ~-=-..!l0L!:....Qy (z-Llz/2J6.k}
El",

e3 = - ~...::...ll0L!:....Qy (z-Llz/2]6.z2}
El",

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999

fl = ~x~oL!:....Qx (z-L)z/2]6z2}
El",

f3 = ~x~oL!:....Qx (z-L)z/2]6z2}
El",

e2 = ~...::...ll0L!:....Qy (z-L)z/2]6.z2 + Oy 6z4}
El",
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yes

system of equations is not possible. For this
reason, a combination of the finite difference
method and the method of successive
approximation is applied,

The method of successive approximation
can be summarized in the followingflow
chart given in Figure 3.

eu=1 u-~ I

ev=lv-vl

eo=l 9 -9 I

u=O • v=0 . 9=0

no

v=v
u=u

9=9

is to recognizethat the displacements
IDde are depending on cross section

'es, the displacements of the Center
vityand the rotation of the principal
On the other hand, cross section
'es and displacements are also

ding on the occurred displacements.
means that a direct solution of this

Figure 3 Flow chart for the method of successive approximation

Whereu , v and e are initial values for
theunlmowndeformation, and (err) is a very
lDlall controlvalue .

Toenable the realization of this
solutionstrategy, a computer program is
developed(codedin FORTRAN77) .

NUMERICAL MODEL VERIFICATION
In order to verify the simplicity, accuracy

and efficiency of the proposed model for
predictingthe deformational response of
columns, a number of experimental
examplesof Thomasson [7], Loughlan [8],
ekoz[9, 10], Fahmy [11] and Abo-Tabikh
12] have been selected, the ultimate load
d deformations were calculated by using

the numerical model. The initial imperfection
[13] of L/500 for Bo,Coand 1/300 rad for Do
was taken into consideration. The ultimate
load was compared with the ultimate load
calculated by both of Egyptian code and
AIS!.

Tables 1 and 2 present the dimensions of
some numerical examples with C [11, 12]
and Z [15]cross section. The typical sections
are shown in Figure 4. Tables 3 and 4 and
Figures 5 and 6 show true relation between
PEX and (PTH, PAIS!, PEc).

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999 C 85
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Figure 4

The Thin-Walled cross section examined theoretically or experimentally

Table

1 Cross Sectional Dimensions

CL

La bcTFyEExEr

mm

mmmmmmMmNjmm~Njmm2mm

CLl-l

304091.17240.8329.661.503302227000.00O.

CLl-2

304091.14240.4630.041.503302227000.00-30.

CLl-3

304091.11240.7629.671.503302227000.0028.

CLI-4

304091.04240.5229.721.503302227000.00-61

CLl-5

304091.34240.3430.091.503302227000.00O.

CL2-1

304091. 18240.2929.851.5033022270060.0014.

CL2-2

304091.11240.5130.221.5033022270060.00-30.

CL2-3

304091.11240.4330.771.5033022270060.00O.

CL3-1

304091. 18240.2130.051.5033022270060.0028.

CL3-2

304091.17240.2430.411.5033022270060.00-61.

CL3-3

304091.18240.3929.821.50330222700100.00O.

CL4-1

304091.19240.4630.751.50330222700100.00-30.

CL4-2

304091.23240.4029.941.50330222700100.0014.

CL4-3

304091.04240.3629.851.50330222700100.0028.

CL4-4

304091.17240.0030.001.50330222700100.00-61.

CL5-1

250580.00220.0020.001.503602041000.00o.

Alexandria Engineering Journal, Vol. 38, No. 3,
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,.2

Cross sectional dimensions for Z shapes

CL

LeabctFyEexey
mm

.
mmmmmmmmN/mm2N/mm2mmmm

1

457.2072.49108.7802.002892227000.000.00

457.2

2950.95100.8915.372.012892227000.000.00

457.2

7852.37101.4515.72.032892227000.000.00

914.4

073.71101.3702.063922227000.000.00

914.4

3352.53101.2215.442.063922227000.000.00

914.4

7852.07101.3215.602.063922227000.000.00

1Z7

1524074.04101.4702.064202227000.000.00

1Z8

152433.152.25101.4715.722.034202227000.000.00

rz9

15247852.53101.2415.522.034202227000.000.00

10

2438073.76101.7501.932892227000.000.00

11

243831.152.22100.3515.491.962892227000.000.00

rz12

24388051.99101.7015.041.932892227000.000.00

fabl,3

Evaluation of C cross shapes results

CL

PTH
PE)(

P'rH / PE><

PAISI

PTH / PAlSI

PEC

PTH / PECkN
kN kNkN

CLl-l

72.10071. 251.01274.3200.97074.6100.966

CLI-2

53.42858.250.91757.9700.92257.5800.928

CL1-3

41.07246.50.88346.5600.88247.1100.872

CLI-4

33.18536.400.91237.8900.87638.3600.865

CL1-5

70.13273.100.95975.3000.93175.7000.926

CL2-1

41.49048.400.85747.8000.86848.2000.861

CL2-2

43.00048.000.89648.6700.88448.8300.881

CL2-3

55.48863.300.87759.4500.93359.3000.936

CL3-1

38.63941.700.92741.8400.92341.3300.935
CL3-2

31.02428.601.08534.5100.89934.4500.901
CL3-3

47.93253.250.90051.3100.93451.0200.939

CL4-1

41.26446.500.88744.2400.93343.6700.945
CL4-2

39.00043.300.90142.7400.91242.8900.909
CL4-3

34.10236.600.93237.1100.91937.2700.915
CL4-4

26.33927.200.96829.8400.88331.6400.832

CL5-1

84.53082.201.02889.800.94190.100.938

Alexandria Engineering Journal, Vol. 38, No. 3, May 1999
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Table 4 Evaluation of Z Shapes Results

CL
PTH

PE)(
PTH/PEX

PAlSl
PTH/PAISI

PEC

PTH/PECkN kN kNkN
Zl

74.55684.5510.88288.9960.83885.9360.868
Z2

110.06899.3261.108109.2541.007108.7931.012
Z3

137.536142.4410.966143.2260.960140.5770.978

Z4

94.176106.830.882105.9480.889103.2010.913
Z5

135.182129.1001.047123.1161.098126.0591.072
Z6

162.061164.6120.985165.5540.979160.1971.012

Z7

83.09188.9960.93489.860.92587.2110.953
Z8

118.946115.2181.032107.2721.109109.5781.085
Z9

141.264129.0411.095132.181.069134.2991.052

Z10

I 49.050I 44.4981.10250.031I 0.98051.4040.954
Zll

I 68.376I 59.5961.14757.604I 1.18767.8951.007
Z12

I 71.417I 66.747I 1.07065.433I 1.091I 69.847I 1.022

90

8070z

60

~
50

I
40f-

a... 30
20100

o 10 20 30 40 50 60 70 80 90

P EX KN

Figure 4 presents the relation between PEX

and PTH• It is obvious that the variation
between the results obtained from the model
and the results obtained experimentally not
exceeds 12 %.

Figure 5 presents the relation between
PTH and (AISI, EC). It is obvious that the
variation between the results obtained from
the model and the results obtained
experimentally not exceeds 16 %.

From the above mentioned comparative
study, its clear that the efficiency of the
present model is verified. It was found also
that the model results are in good
concordance with both AISI and Egyptian
Code.

Figure 5 Relation between PEX and PTH

90

80

0AISI
A

EC
70 z ~ 60

(,)

50
LU CL 4006

Ui

30;;: CL 20
1000

102030405060708090

PTH

KN

Figure 6 Relation between PTH and Codes

SYSTEMATIC APPLICATION
The results of the model presented in the

previous comparative study encouraged the
author to generate some applications. The
results of these applications could be used in
designing and manufacturing the thin-walled
cross section .

Local buckling study for C section
In cold formed steel members [14],

individual elements are usually so thin with
respect to their width. These thin elements
may be buckled locally, at stress leve11ess
than the yield point if, they are subjected to
compression, shear, bending. Local buckling
of individual elements of steel sections has
been one of the major design criteria. It is
well known that steel element will not fail
when the critical local buckling stress Fer,

C 88 Alexandria Engineering Journal, Vol. 38, No. 3, May 1999
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(20)
en by Equation 20 is reached. The
ment willcontinue to carry additional load
means of the redistribution of stress after

buckling occurs. The stress distribution
uniform until reaching the critical local
cIding stress Fer of the element. Then the
ment starts to buckle and the portion of

post buckling load of the center strip
transfers to the edge portion of the element.
/Ibisredistribution of stress continues until
the stress at the edge of the element reaches
theyieldpoint of steel and then the elements
beginsto fail.

h
• I )

---rL--l----,,-+lb
Sec a

, 2

F = K ,,-£ t.
er 12(1- ~.l?)w2

where
w the length of the element
t the thickness of the element
K= 4 for interior element (stiffened element)
and 0.425 for outer element (unstiffened
element)

The ratio between the length (w) and the
thickness (t) for the individual element
controls the local buckling, the limit value
for this ratio was studied for both columns
with C cross section of steel 52 as shown in
Figure 7.

h
• i )

-·-~·!·-·-·-f-·-·-·-·-·-::J-~·~·
I
I

Secb

Figure 7 Thin Walled C cross-section
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Local Buckling of flange

o 10 20 30 40 50 60 70 80 90
bit f

1.4

1.21
>-

0.8a.. --J:I- 0.6a..

0.40.20

It was found that the model is in good
agreement with the American code and the
Euro code; the difference is less than 8%
but the difference in comparing with th~
Egyptian code limits is about 200/0.

Figure 8
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From Figure 8, the lib prevents local
bucklingin the range of:

11< b / t 205 20.87 bl 38.90
- r < . or rr;- tf < rr;-\jFy \jFy

andfrom Figure 9, it is obvious that the web
has local buckling when :

hit ~30 or hit ~ 56~1\jFy

Table 5: Limits of hit
Case

I
Model AmericanEgyptianI Euro codecode

code

Stiffened

56.92/
58.6345.00058.63

element
JF;

.[F;JF:.JF:

Unstiffened

20.87056.92156.92156.921
element

.[F;JF:JF;JF;

Ale

Table 5 shows the comparison of these limits
with the Egyptian code and the American
code for steel 52.
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1.4

1.21
>0-

0.80- --I 0.6
f-

0-
0.40.20

0

Figure 9

10 20 30 40 50 60
hIt

Local buckling of web

Case of Column
The relation between P and 8 was studied

for three columns with length of 2.00 ill and
different cross sections shown in Figure 10,

these three columns have the same weight.
The relation between P and Awas studied for
sections a and b , and the results are plotted
in Figure 11.

From Figure 12, the column of (section
a) has low ultimate resistance with big
deflection, while the column with (section cl

presents the best behavior (ultimate
resistance and deflection) in comparing with
the other sections .

The effect of the geometric imperfection
and the local buckling of the thin column
section (a and b) is clearly indicated in
(figure 11) respectively in comparing withthe
theoretical Euler buckling curve of the same
section, where:

PE = A n2 E
1,,2

186mm~ 170mm~~ 170mm~•
)• )

1172=
[] 164mm[V

] 164mmt=lmm

t=lmm
t=lmm

16mm

16mm

72mm

64mm
•

)
IS~f

~

I Sec ci

186mm t=lmm 170mm

16mm

t=lmm

Figure 10 The Thin-Walled cross sections used in applications

Case of Beam
The relation between Q (t/m-) and 8 was

studied for two beams with length of 6.00 m
and cross sections with the same weight.
Figure 13 presents the loaded beam and the
studied cross sections .

The effect of the lib could be easily noted
from Figure 14, where the beam of the cross
section (b) presents a relatively good behavior
in comparing with the beam of the cross
section (a).

C 90 Alexandria Engineering Journal, Vol. 38, No. 3, May 1999



Ilmulation of The Behaviour of Thin-Walled Beam-Colunm with Non-Symmetrical Cross Section

The relation between P and A. for a column
with C cross-section

25

a

20

Qt/m

15

_ _ _ .

10

Sec b

...-' 'h."

deflection mm

5

.." .." .- - .('.
i

:

Qt/m'

o

170mm

4

o

2

1

5

c::: 3g
a.

Figure 12 relation between P and /) for a column with
C cross section

Sec a

186mm
I
~

300200

LI,j,j

Qt/m

I 11 I I

100

6.00m t=lmm

t=lmm • 16mm

)

72mm
63mm

Figure 13 He beam loaded by uniform load Q t/m"

0.3

0.250.2
P Um 0,15

0.10.050
0

20 40 60 80

c

100

Deflection mm

Figure 14 Relation between P (t/m) and /) for a beam with C cross-section
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area

of the
and y

Initial

Ultimate load due to
Egyptian code and Ultimate
load due to American code
St.. Venant Torsional
moment and Twisting
moment.
Displacement of the
centroid in x and y

directions and Angle of
twist.
Initial deflection
centroid in x
directions and
twisting angle.
Displacement of the shear
center in x and y
directions.
Deflection ID x and y
directions and Twisting
angle due to local buckling.
Local coordinate system
whose origin moves with
the cross section and
whose axes are always
parallel to X,Y,Zaxes.
Global coordinate system
fixed in space .
Local coordinate system
fixed to the crass section
and deforming with cross
section.
Distance between shear
center and centroid in x
and y directions.
Axial strain and Axial
strain at centroid.
Normal stress, Residual
Stress and Yield stress.
Curvature about S and Tl

axes and Warping
curvature.
Double sectorial
coordinate.
Critical local buckling
stress.
Effectiveslenderness ratio.

local axes S and 11 and
LocalWarping moment.
Column load , Theoretical
Ultimate load and
Experimental Ultimateload

Uo , Vo, 80

cr , crI' , cry

So, llo

Fer

u,v,8

Tsv, Tw

P, Pth , Pex ,

um, Vm

x,y,z

X,Y,Z

K Wagner coefficient.
L Length of the studied

element.
Mx , My, Mo) Bending moment about x

and y axes and Warping
moment.

Ms , M'l' M; Bending moment about

NOMENCLATURE
A Cross section area of

element section.
Bo, Co, Do Initial Imperfection in x,y

direction and twist .
E Young's modulus.
exo • ~o . exl • ey\ Ec.centrici~ of load

measured in x and y
direction at z = 0 and z = L.

G Shear modulus.
Ix, Iy, I", Moment of inertia about x

and y axes and Warping
moment of inertia.

KT Torsional constant of the
cross section.

CONCLUSION
Within the indicated scope of

investigation, the main conclusions that
emerged from this study may be summarized
as following:
1. The predicted load-deformation responses

show satisfactory agreement with the
experimental results. The ultimate load
carrying capacity can be calculated with
an error not exceeding 12 % with respect
to experimental results.

2. The proposed numerical model is a
powerful tool that could be used as a
means of estimating the accuracy of the
various design procedures, and could also
be used whenever a new type of situation
not covered by simplified methods is
encountered.

3. The load decrease with (hit) of the cross
section (hit ~ 30) for steel 52 .

4. The limits for local buckling calculated by
the Egyptian code are relatively
conservative in comparing with the other
codes and with the present model.

5. The effect of the lib is very important in
increasing the ultimate capacity of the C
section and improving the element
behavior.
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