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INTRODUCTION
en a set of data points, (x;, yj), 1= 1, ...
' N. It is required to interpolate these
ts such that the overall curve possesses
. tangential and curvature continuity.
gh there exists numerous schemes
th ensure tangential continuity, more
gk is still required for the case of
e continuity.
n Reference 1, parametric cubic curves
used to interpolate the data points. The
faner control points of each span must
‘determined such that curvature
inuity is preserved at both endpoints.
perical methods are used to solve the
tion of these inner points which is given
he solution of two nonlinear equations in
-unknowns. However, it is not always
sible to find a pair of inner control points
will ensure curvature continuity at
h endpoints simultaneously.
This paper presents an alternative
hod which uses the hybrid of two cubic
ier curves to interpolate data points. This
",. od has the advantage of not only being
)al but also taking away our worry of
iether the tangent and the curvature at
e data point are compatible or not with
 tangents and the curvatures at the other
ta points. Less computation is needed as
ere is no need to solve any set of
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points, given as (xj, yj), i =
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ABSTRACT

The paper presents a method for interpolating a set of data
1, ..., N, such that the overall
curve possesses both tangential and curvature continuity.
The basis for this curve is the hybrid (or convex combination)
of two cubic Bezier curves. This scheme is local and easy to

Bezier, Curvature, Contiuity, Interpolation

equations numerically or otherwise. The
idea of using hybrid Bezier schemes has
been described in Reference 2. This scheme
is based wupon the idea of a convex
combination of local Bezier curves,

THE HYBRID SCHEME
The two cubic Bezier curves are defined
as follows:

P1(t) = (1 - 1315 + 3(1 - t)2tB + 3(1 - Yt2C,

+t9041 (1)
Py(t) = (1L- t)31; + 3(1 - t)2tBy + 3(1 - t)t2C,
* t311+1

where B, By, C;, Cj are the inner Bezier
points, and 0 < t < 1, (see Figure 1).

Then, convex combination is used to
combine Py(t) and Pj(t) into a hybrid curve
P(t), where

P(t) = u(t) P1(t) + v(t) Py(t) (2)
and
u(t) + v(t) = 1, u(t)= 0, v(t) = 0. (3)

We need P(t) to interpolate the data points [;
and lj+1, and also to satisfy unit tangent
and curvature continuity at these points. As
such, we would like the following conditions
to be fulfilled:

P(0) = P1(0),P'(0) = P'1(0), P"(0) = P"1(0) (4)

and

P(1) = Po(1),P'(1) = P'a(1), P"(1)= P"y(1) (5)
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where prime indicates differentiation with

respect to t. By differentiating Equation 2 we
obtain

P'(t)=u'(t) Pp(t)+u(t) P'y(t)+ v'(t) P(t)

+v(t) P'a(t)
P"(t) = u"(t) Py(t) + 2u'(t) P'y(t) + u(t) P*¢(t)
+ v"(t) Po(t) + 2v'(t) P'o(t) + v(t) P (1)

In order to satisfy (4) and (5), we need the
following relations:

u0)=1 v(0)=0 u'(0)=0 v(0)=0
u"(0)=0 v'(0)=0 (6)

w(1)=0 v(1)=1 u(l)=0 v(I)=0
u(l)=0 v'(1)=0 (7)

Figure 1  P(t) is the hybrid of Pi(t) and Pz(t)

The points Bj and C; are chosen so that Pq(t)
matches point, tangent and curvature at I;, and
By and Cy are chosen so that Py (t) matches
point, tangent and curvature at I;, ;. We can use
the blending functions u(t) and v(t) in any form
provided that they always satisfy Equations 3, 6
6 and 7. These ensure that the resulting hybrid
curve P(t) interpolates I; and Ij;; with curvature
continuity correctly only if By, Cy, B and Cy
are set properly. Below are two examples of u(t)

and v(t) which can be considered, as presented
in Reference 1.
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Trigonometric form:

u(t) = ((1 - 2t)nsinat - 4(1 + cosnt)
+72(1 - 1))/(n2 - 8)

and v(t) = 1 - u(t)

Polynomial form:

u(t) = (-6t2 - 3t - 1)(t - 1)3

and v(t) = 1 - u(t)

The above blending functions are mon

and symmetrical about t = 0.5 (i.e. v

v(0.5) = 0.5). Since most coi

programming languages have prec

trigonometric functions, programm

Equation 8 should not be a pn

although more computation time W

required compared to the computatior

of Equation 9, which causes the rest
curves to appear tighter compared ft
curves of Equation 8. The following
have to be taken:

(a) estimate the curvature and
values
at the data points.

(b) obtain the two sets of inner Bezier po
across each span which will satisfy tl
estimated curvature and tangent va

at
the data points.

ESTIMATION OF THE TANGENT
CURVATURE VALUES

To define a curvature continu
interpolating curve, we must know
tangent and the curvature values at the d
points. This can be obtained from |
general cross product form Reference 1a
2 given in Equation 10. In actual practi
we need to estimate these values. We deng
T; and K; as the tangent and curva
point I; respectively.
Consider now three consecutive interpol
data points denoted by I;_1, Ij, Ij4+1, where
curvature values at points Ij is:

__20,-1.)x{, - 1)
' [1;' "'!:'—L!!m _-'r;U]s-L _erl

(10)



id the tangent values of points | is:

= aj(lj - Ii.1) + bi(lj+1 - I (11)
there:

= Kie1 | 1141 - 1512

nd b; = |Kj_q | 11; - 1112

In the case of a closed curve, the estimation
of the curvature and tangent values of I
ind Iy is done by using methods given in
Equations 10 and 11 and by taking I = Iy
and In4+1 = I7. In the case of an open curve,
we take the curvature of I as the curvature
of the circle passing throughly, Ip and I3
and the curvature of I as the curvature of
the circle passing through IN-2; IN-1 and
Iy. In order to estimate the tangent values
of both endpoints, the following method is
suggested.

Let Iy, Ip and I3 be the first three

interpolation points. We define a cubic curve
[3] as:

Q(t) = (1 - )2(1 - 2t)1; + 4(1 - 1)2tE;
+4(1 - t2E4 + (2t - 1)t215 (12)

where 0 < t< 1 and Eq, Ej are the inner control
points. From Equations 12 we observe that:
Q(0.5) = (E1 + E9)/2 which indicates that the
curve touches the control polygon when t

=0.5. Let this point be (E] + Eg)/2 =15 (13)

Differentiating Equation 12, we can estimate
the tangent values at I1, namely

T1=Q(0) = 4(Ep - 1)) (14)
' Similarly at t = 0.5, we can estimate Ty as:
T2 =Q(0.5) = (I3 - 1)/2 + (E5 - Eq) (15)
Solving Equations 13, 14 and 15, we get:

i1 =13 +4ly - 51y - 2Ty (16)

Similarly, we obtain the estimated value of
Ty as:
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Ty = 5IN - 4IN-1 - IN-2 - 2TN-1 (17)

The above suggested method, which
results in Equations 16 and 17, is not the
only method to estimate the tangent values
at the endpoints. The choice of the tangent
of the circle passing through Iy, Ip, I3 (or I
2, IN-1, IN) could also be used but our
experience has shown that this choice may
result in the curve not satisfying shape
preservation at the endpoints.

DETERMINING THE INNER BEZIER
POINTS OF EACH SPAN

Proceeding the calculation of the inner
Bezier points of each piece-wise curve or
span, let A = [}, D = Ij4q, is the angle
between Tj and (D - A), and is the angle
between Tj4+ and (D - A), (see Figures 2 and
3). Therefore:

sinazw (18)
|%]|D - 4]

, (D~ A4) x T 4

smﬁ=——-——- (19)
|D - AT

There are five cases which we shall
consider.
Case 1: At KiK;1 = 0. [; andljy; are

joined by a straight line with zero curvature
from I; to Ii'*].'

Case 2: At KiKj4+1>0,Kj. 1 #0andKjyp #
0. As in [4], the curve turns towards the
same direction. Both inner Bezier points, By
and Cy (or Bj and Cp) are on the same side
of the line joining A (or ;) and D (or li+1)

For simplicity and without loss of generality,
we would like (C; - B1) to be parallel to and
in the same direction as (D - A). Thus, we
can write:

. ’?;’xﬂﬂl

sin(a + ff) = ————"-1 20
7] _

and IC1-Byl=%|D-A] (21)

where % > 0. Also:
h= IC]_

a=|By-A| and
-Bj| sina=i |D-A| sina (22)
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From Reference 5, if Kjis the curvature at
point A,

then |Kj|= % : (23)

and substituting Equation 22 into 23, we
get:

3|K;| |B71 - A2 =2A|D - A|sino (24)
A
Pl
Mone NGy
&\/B C‘\.’ s
/ S 7
Fid N, P
R
Lo 4
A 7D
&-‘//
v

N\ B,
.\ by
N %
s \&.A ’}‘“D
T o\
i %6 P,
S A Py N
$ N g o ey

Figure 3 Cases where Ki Ki+1 < 0. Refer to case 3(b)
Using the sine rule, we obtain

|Bi- 4] _(1-4)|D- 4]
sin 3 sin(a@+ f)

(295)

where Equation 24 and 25 are two equations
in the two unknowns |B; - A| and 2. We
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substitute Equation 25 into 24 to
and obtain a quadratic equation in |By

3|K;|sinf|Bj - A|2+2mnosm(o+a;|51
-A| -2|D-A| sinosinfi= 1

One of the roots of Equation 2
positive and the other is negative.
the positive root, which is:

|B1 - A| = (-sino sin(o+f) + {S1n2o sin?
+6|K;| | D- A|sino stm)l/?)/(slxll -'

where sina and sinf are always positive
< a, p < 180°. Hence, we obtain |D - Cy|

M = M (28

sin & sin #

Analogously, we obtain:

]D Co| = (-sina sin(a+p) + gsmza
sin (a+ﬁ)+6|K1+1| | D-A|sin
sinB)1/2)/(3|Kj41 | sina)

and

By Al = |D Cg{smﬂ

sin &

Case 3: At KiK;;1 <0, K;.1 #0 and K1+2 #
0. As in Referenc 4, the curve turns in diffe
directions at the interpolation points, as on
turning clockwise and the other is turning a
clockwise. In this case, one of the following
cases may occur:
(@) The two sets of inner Bezier points lie
opposite sides of the line joining I; and
i.e. B} and Cj lie on one side while By
Cp lie on the opposite side. As before,
simplicity and without loss of generality,’
assume B;C; and BoCy to be parallel to/
as in Figure 2.
(b) The two points of each set of inner Bezie
points lie on opposite sides of the lin
joining [; and Ij41, i.e. B] and By lie on on
side while C; and C; lie on the opposit
side. We define two vectors, S; which i
perpendicular to T; and S;;; which i
perpendicular to Tj;j, with both S; an
Sj+1 making acute angles with (D - #
Then, we let C; lie on vector line S; and lé
Bg lie on vector line S;; 1, see Figure 3.



efore, by replacing p = 90 - « in Equation
B get:

B = (-sino. + (sin2c + 6[K;| D - Al

o cos?a)!/2) /(3| K| cosa) (31)
| Equation 27 gives:

.Cy| = |B1-A| tana (32)
employ the same approach to obtain:

~Cp| = (-sinp + (sin?p + 6 | Kj4q | |D -

0s%B sinp)1/2) /(3| K+ 1 | cosp) (33)

g-Al = |D - Cp| tanp

se 4: At KiKj+1 >0, Kj.1 =0and/orKj;p

0. We shall consider the case K;_1 = 0 and
e other follows analogously. From case 1,
hen K; 1 = 0, we define the Bezier curve to
s a straight line joining I;_; and I;. This
nplies that we have to treat K; = O in order to
chieve the continuity at I; and we need to

Hybrid Interpolation with Tangential and Curvature Continuity

Similarly, when Kj4o = O, we get:

ID—A!sino:

- e ) (37)
N _|D—A|sinﬁ
|Bz A! _ sin{(a + f) (39)

Case 5: At KiK;;1 <0, Kj_1 = 0 and/or K;j;2=0.
As in case 4, we shall consider when Kj_; = 0.
In order to achieve the continuity at I;, we need
to treat K; = 0. By using the sine rule, we get:

|IBy-Al = |D-A| cosa (39)
and
|[ID-Cy] =|D-A| sina (40)

Alternatively, we obtain Equation 38 from
Equation 30 by taking the limit K; — O.
Similarly, when Kj;9 = 0, we get:

mpose h = 0 in Equation 23. This implies that ID-Co| =|D-A| cosf (41)
y coincides with Cq. By using the sine rule, and
B oet
|[Bg-A| =|D-A]| sinf (42)
! |D - A|sin B
B - A|= Py (35) NUMERICAL RESULTS
B The above scheme was tested on the
1 D Alsi data given in Tables 1, 2 and 3. The
D - C1| = L_;E}ﬂ (36) interpolating curves are shown in Figures 4,
{ sin(a+ f) 5 and 6. The output satisfies the
compatibility and continuity of tangents and
Alternatively, we obtain Equation 35 from 27 curvatures at the data  points.
by taking the limit K; — O.
Table 1 McAllister, Passow and Roulier data
22 | 225 | 226 | 227 | 228 | 220 [ 23 | 23.1 | 232 | 233 | 234
523 | 543 | 550 | 557 | 556 | 575 | 590 | 620 | 860 | 915 | 944
Table 2 Heat titanium data
565 | 635 | 695 | 795 | 855 | 875 | 895 | 915 | 935 | 985 | 1035
0.644 | 0.652 | 0.644 | 0604 | 0,007 | 1.336 | 2.160 | 1.598 | 0.916 | 0.607 | 0.603
Table 3 Circle data
X [ol1]1 |o
Yy [ofo |1 |1
Alexandria Engineering Journal Vol 38, No. 3, May 1999 D43
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X Span

Figure 4a Data McAllister, Passow and Roulier Figure 4b  Curvature profile (magnified) of Figure 4-a
Y

b

Figure 5-a Heat titanium data Figure 5b  Curvature profile (magnified) of Figure 5-a

Y
e e .
ol
x
Spen
Figure 6-a Test data of circle Figure 6-b  Curvature profile of Figure 6-a
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CONCLUSION
Suggestion is given to interpolate data
with curvature continuity at the
interpolation points. This scheme is simple
to use, requires few calculations and the
output is fairly comparable to the work of
Reference 1.
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