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ABSTRACT

The solutions for the non-linear partial differential equation of heat
conduction, are obtained in which the thermal conductiviy is
temperature dependent and is of exponential form, using Kirchhoff
transformation. Two worked problems (homogeneous and non-
homogeneous) are considered for illustration.
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INTRODUCTION

T\he non-linear partial  differential

equation of heat conduction has been
the subject of intensive interest dating from
Kirchhoff's work in 1894, where he
introduced the transformation which has
come to be known as the Kirchhoff
transformation. The derivation of the non-
linear equation of heat conduction is
developed in conduction of heat in solids by
Carslaw and Jaeger [1]. They gave solutions
to some mnon-linear problems. In 1930, Van
Dusen used the Kirchhoff transformation to
simplify the non-linear equation of
conduction. Plunkett [2], in 1950,
transformed the non-linear time dependent
equation of conduction in rectangular
system using the Kirchhoff transformation
and solved the resulting simplified non-
linear equation by a numerical methods.
Friedmann [3], in 1957, dealing with the
same types of problems, gave additional
analytical solutions and further numerical
results. Cobble and Ames [4], in 1963,
developed a method for solving the linear
Poisson’s equation in any orthogonal
coordinate system. Cobble [5], in 1967, used
the Kirchhoff transformation to simplify the
non-linear equation of heat conduction
where the temperature dependence thermal
conductivity is in ploynomial form.

In this paper, the non-linear heat
conduction equation in any orthogonal
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coordinate system is handled by solving a
linear partial differential equation, and
transforming the solution in such a way,
where the temperature dependence thermal
conductivity is in exponential form. This
technique can be utilized directly using the
methods presented in this paper to solve a
large class of non-linear conduction
problems. The range of non-linear
conduction solutions is extended to handle
a special class of unsteady state problems in
which the specific heat at constant pressure
is a specific function of temperature.

MATHEMATICAL FORMULATION OF THE
PROBLEM
The steady-state conduction equation for
an incompressible solid having a coordinate
dependent distributed source [6,7] is :

%.[K(u)—v)u}+g =0 (1)

It can be linearized using Kirchhoffs
transformation, namely,

u
V=Vu)= | K(s)ds )
0
Equation 1 takes the form:
V2V +g=0 (3)
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TRANSFORMATION OF BOUNDARY
CONDITIONS IN AN ORTHOGONAL
COORDINATE SYSTEM

The three types of boundary conditions
are:
i Dirichlet boundary condition: prescribes
temperature on the boundary.
If K=K(u)=K. F(u), where F(u) is in
exponential form.

ie. F(u) = exp(cu) (4)

Then, using Equation 2
- K

V=V(@)= [Kgexp(cs)ds= —o[exp (cu) - 1] (5)
le) c

Equation 5 can be expressed as:

= m(u%} )

It can be seen from Equation 6, that if
V=0 ,thenu=0
ii Neumann boundary condition: specifies

the rate of change of temperature at
points on the boundary in a direction

perpendicular to the boundary
(directional derivative).
Since Equation 2 holds, then
0V 0V Ju dV.ou 7)

6ui Ju aui du aui

where ui is a general orthogonal coordinate.
Now from Equations 4 and 5 we get

;_V= Ko exp (cu) = Ko F(u) = K(u) (8)

i

Substituting from Equation 8 in Equation 7
we obtain

o5 St ou

then 64 _ follows from &V _
15} ui

6ui

iii Robin (convection) boundary condition :
This is a linear combination of Dirichlet
and Neumann boundary conditions. The
vector equation for the heat flux
(Fourier’s law) is

q=-K Vu (10)

So that the component in a given
direction ui, for orthogonal curvilinear
coordinates is.

- K 1 Ju o (11)
Qi ej=- K— e;
i h1 6u1 i

If this component is convected through a
film coefficient h to a medium at zero
temperature, then according to Newton’s law
of cooling (heat transfer proportional to
temperature difference), we have

qui ej=h(u-0) e; (12)

Using Equations 11 and 12, we may write a
component identity as

=hu (13)

If twe assume that the heat transfer
coefficient takes the form [5]

h = h(u) = h, L(u) (14)

where L(u) is a function to be determined.
Let us consider an equation in V that is
linear and similar in form to Equation 13

A

1
hi E’ui

-_Ay » A=constant (15)

Since it was previously required from
Equation 2 that V = V(u), then
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1oV _ 12V aou_14dV au
hiaul_hiau'au h, du’ o u;
= DK o) S
1 i

—1——K du -I—K au
su:. h; o u.

(16)

Using Equations 2 and 16 in Equationl5,
gives

Lgu_ A ; K(9)ds (17)
h 6u

For Equation 17 to be identical to Equation
13, we must have

u
hu =A [ K(s)ds
0]

u
hoL(w).u= AK, [ F(s)ds
(0]

It is necessary that
AKo=ho — A= % = constant (18)

u ‘jl F(s)ds
Lu).u= [ F(s)ds »Lu) -0 (19)
(0] u

In addition, from a physical basis, itis
necessary that Lim L{u) has a finite value.

u-—»0
The objective of a finite value is to avoid
singularity, which means contradiction with
the boundary conditions.
Thus the convection boundary condition i.e,
Equations 17 in any orthogonal coordinate
system, will be transformed to:

Ko
= -hg L{u).u = -h{u).u

1,0 h u
hTKﬁ:—_O.KO [ Fis)ds (20)

Substituting from Equation 4 in Equations
14 and 19 leads to
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u
ho | exp(cs)ds
h(u) = o
u
\%
22 fep(ea) 1] 21
From Equation 19, then
| explesyd
exp(cs)ds
Lu)= O d _exp(cu) -1
u cu

and so Lim L{u) = 1 is a finite value.
u—o

Uniqueness can be established, from
Equation 6 and from the physical basis that
u is real and u > 0, and that c is real, then

1+£Y->1 . V2=20

[e]

WORKED PROBLEMS

Problem 1

A rectangular plate O< x < a, 0 <y <b, the
boundary at x=0 is kept insulated, the
boundary at y=0 is kept at zero temperature,
the boundary at x=a dissipates heat by
convection into an environment at zero
temperature with a heat transfer coefficient
h, and finally the boundary at y=b is kept at
temperature f(x) as illustrated in Figure 1. It
is required to obtain an expression for the
steady-state temperature distribution u(x,y)
everywhere in the plate.

<

0 /_.. u(x,b)=0{x) ¢

y=b

au(0.y)
ax

=0

x=0 x=a

u=u(x,y) (‘

y=0 ¢

x
\-—- ulx.0)=0 B

L‘-’—%‘fﬂx-hu(a.y)

Insulation

YX’XXYY‘%XX’Y s

(=3
"
>

Figure 1 Boundary conditions for a rectangular region
considered in problem 1

Solution : To mathematically formulate the

problem we have:
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The conduction equation in steady state in
vector form is

- -
V.(KVu =0

In scalar form using Cartesian coordinates
we get

2 (g2u), 8 (gou)_ (21)
ax(Kax)+ay(K6y) 0

The boundary conditions are '

2u(o,y)
—— =0 on side AD, O<y £ b (22)
cx
u(x,0)=0 on side AB, 0 <x < a(23)
Ou(a,
K _Q= -hu (a,y)
Cx

on side BC O0<y< b (24)

u (x,b) = {(x) on sideCD,0<x<a (25

K =K(u) = Ko exp (cu),

K
V=V(xy = c° [exp(cu(x,y)) - l] »
oV _oV c‘iu_Kau
éx odu'dx T ox’
6V 26V du

The transformed conduction equation is
(linear homogeneous partial differential
equation)

2. (29), 2(2v)_
0x\0x) oy\dy)

7 =0 (26)

The transformed boundary conditions are:

8 V(o,y) _ . duloy) _

i
0 x K 0 x 0 27)
V(x,0) = EC"—[exp(cu(x,O)) - l] =0 (28)
dV(a,y) _hy
9=z K V(a,y) (29)
K,
V(x,b)= . [exp(cu(x,b))— 1]

= —I%’—[exp(cf (x)) - 1] (30)

The transformed boundary value problem is
illustrated in Figure 2.

-

cl(xl”

V(x.b)= _"E(_'. (e c

D /"-

y=b

%X\k/y

2 v{0.y)_
8x

av(ay) . P viay)
ax Ko

x=0 V=V(x.y) x=a

Insulstion

NN

y=0

\_ V(x,0)=0 B

<
10
>

Figure 2 Transformed boundary conditions for a
rectangular region considered in Problem 1

Now, we are going to apply the technique
of “separation of variables” to solve this
posed problem i.e. Equations 26 - 30. The
details are given in Appendix A.

The formal solution is

oC

Vixy) = iA‘n sinh (Any) Xn(x)  (31)
n=

where
ho
Kodn

tan(in a) =
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Xn (%) = V2 cos (A nx)

! (h_)
K
a+-~°—?
(3]

J '——[exp of(x)) - 1] Xn (x) dx

D = sinh }unb

Then the solution of Equation 21 with
the accompanying boundary conditions
given by Equations 22 -25 is

u(xy) = %1n (1 +Q%—X)—J (32)

where V(X,y) is as given by Equation 31.

Problem 2

A plate is bounded by two concentric
sectors of circles of inner radius a and outer
radius b and has a central angle a. The
boundary surfaces at r=a,r=b,and0 =«
are all kept at zero temperature, the
boundary surface at 6 = 0 is kept insulated
as illustrated in Figure 3.

The heat is generated in the plate at a
constant rate per unit volume. It is required
to obtain an expression for the steady-state
temprature distribution u(r, 6) everywhere in
that plate.

u(b, g)=0
D
u=u{r, Q)
] ; r=a
% ua, 0)=0 0=0 Insulation
0 AXX/\XXXXXXXB =
\__ du(r, 0)
20

Figure 3 Boundary conditions for an annular region
considered in Problem 2

Solution : The mathematlcal formulation of
the problem is:

The conduction equation in steady state in
vector form is

> —
V.[K v u) +g=0

In scalar form using polar coordinates
we have

119 [pgou), 0 (Kou)l o _ 33
?[a—r(rKéT)+ae(r ae)}“Lg"o ik

The boundary conditions are:

ou(r,o)

30 =0 on AB,a<r<b (34)
u(@0) =0 on AD,0<6<a (35)
ufra) =0 onCD,a<r<b (36)
u(g) =0 onBC,0<6<a (37)

K =Ku) = Ko exp (cu),

V=V = 20 [exp(cu(r,8)) - 1],
C

The transformed conduction equation is
(linear non-homogeneous partial differential
equation)

1 a(aj 6(16V)
=l | g
r|or or 006\r @6

2 ~ 2
oV 10V 1 6°V
2+—’—+—2———0 2+g=0 (38)
or rér r° 96

The transformed boundary conditions are:
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o V(r,o0)

-K O u(r,0) _ (39)
o6 o0 g
V(a.0) = -—-—[e\p(cu(a 0)) - 1] 0 (40)

Vir,o) = -KC—[exp(cu(r,a) - 1] =0 (41)

V(b,0) = —IS—O—[exp(cu(b,G)) - 1] =0 (42)
c

The transformed boundary value problem is
shown in Figure 4.

¥

C
B
A
4\
o
o v(b, 6 )=0
D r=b
v=v{r, &)
_/ r=a
5 V(a, @ )=0 g=g Insulation
. A XXXKXXXKIK g "
= a.Lr' 0) =0

a9

Figure 4 Transformed boundary conditions for an
annular region considered in Problem 2

The finite Fourier transform [8], is used
to solve Equations 38-42 for the non-
homogeneous problem. The details are given
in Appendix B. The formal solution is

V(r,0) =
= 12 2\/55[ po+ 1
nz::1 i cos(in0). - %1 Bn - l)

3 Y O
B"-0" @

(43)

where

A _(en-)m

2a

Then the solution of Equation 33 together

with the associated boundary conditions

given by Equations 34-37 is

u(r’e) = -l—ln(l CV(I' 9)) (44)
(o KO

where V(r,0) is as given by Equation 43.

APPENDIX A

a2V(X’y) i azv(an) =0

0 x? oy?

O<x<a,0<y<b (A-1)

NO,y) _

T ox
V(x,0) = 0 (A-3)
6V£a,y Javite V(a,y) (A-4)

o x K

_ 0

K,

Vi) = = {exp(cfx)) -1} (A-5)

Solution: Assuming a solution of the form
V(x,y) =X(x) Y(y) (A-6)

The problems defining the X(x}) and Y(y)
functions become

d;i:(z)() +22X(x)=0 in0O<x<a (A-7)

X(0) = 0 (A-8)

X (a) = _I?: X(a) tA-9)

and

TYO) _32v)=0 no<y<b  (A-10)
dy~

Y(0) = 0 (A-11)
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The solution of the eigenvalue problem
(A-7), (A-8) and (A-9) [Sturm-Liouville
System], is obtained in the normalized

eigenfunction form
=

¥n (%) = X(An,x) = V2 cos (A;X)

: 2
;'21'1 + (&)
‘Ko

and the eigenvalues Ay are the positive

roots of 4, tan (A a) B

K,
The solution of Equations A-10, A-11 is
given in the form

Y(y) = A sinh (Ap y), where A = constant

The complete solution for V(x)y) is
constructed as

Vix ,y)-”- 2 An sinh(% , y)X, (%) ,
n=1
where A, are Constants

which  satisfies the transformed heat
conduction Equation (A-1) and its three
homogeneous boundary conditions (A-2),
(A-3) and (A-4).

The coefficients A, should be determined so
that it also satisfies the nonhomogeneous
boundary condition (A-5). The application of
the boundary condition at y = b yields

V(sb) = 3 A, Sinhp.,5)%, 0 = = [exp(eu) - 1]
C
in0<x<a
The coefficients An are determined by

utilizing the orthogonality of the funsction
Xn (X), we find

A, sinh >\,n b) ‘,' E(L {eCf(}‘)

C

0 I}Xn(x)dx

APPENDIX B

o2 vir, 0)  12V(r,0)

or? Tt or

2

. 14 0“ Vfr, 6) ~0

rr 06°
a<r<b, 0<O<a (B-1)
& Vr,0)
RN vt 2od P ) a<r<b B-2

3o (B-2)
Vi@, 6)=0 0<0<a (B-3)
V(r, ) = 0 a<r<b (B-4)
V(b, 8) = 0 0<6<a (B-5)

Solution: The corresponding linear
homogeneous problem is

&* V(r 6 ,18VE9 | 32 Vir,0)

3 e T2 ae v B9
o 0 V(r,0) .
g =0 (B-7)
Via, 6)=0 (B-8)
V(r, o) = (B-9)
V(b, 6) = (B-10)

If we assume a solution in the form R(r) H(6)
then substltutmg in Equation B-6, we get

TR R H .,

— =)

R R H
When the boundary conditions (B-7) and
(B-9) are imposed on the separated function,
we obtain a Sturm-Liouville systen in H(0)
given by :

H +55 H=0

(B-11)
H (0)=0 (B-12)
H(o) =0 (B-13)
The eigenvalues are 7., = Q—nz—_l)lt- ;
o

(n =1,2,3,...), with the orthonormal

eigenfunctions H_(6) = Jg cos (An6)
o
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If we apply the finite Fourier transform
associated with this system to (B-1), we get

R

2 2
J‘ (a V(f,e)+la V(r,6) *%a “V(:,B)‘ g}Hn(e)de —
oo L OT° r Or 06 )
o ¢ 10 ¢

. j V(r,0)H , (6)d6 o V(r,0)H,, (0)d6

o

1 o

L J' &2 V(r,0)
2 2

r (o]

o
H,(0)d0 +g j H,(0)d6 = 0
o

Interchanging the orders of integration and
differentiation for the first and second terms
of this equation, and integrating by parts the
third term, together with the fact that Hn(a)

=0, H, (0) = 0 we finally obtain

2 d- V(r;n n) iy dVy(r,~ n)
dr” dr
) 2'\]2(1

2n-n

- ;"a V(r,7~ n)

(0 U (B-14)

This is an ordinary differential equation

(Cauchy-Euler equation type) for V(r,in}.

When we take finite Fourier transform
of boundary conditions (B-8),(B-10) we
obtain boundary conditions for Equation
(B-14)

V(a,xrn)=0 (B-15)
V(b,An) = 0 (B-16)
The solution of Equations (B-14), (B-15), and
(B-16) is

r\)\n £ An
2 2 _bZ(_]
242a a (b/' a

=1n+! £
6@

Vir, hy) = —5—
4-322 @n-N=

Inverting this equation, the solution
becomes

V(r,0) = il V(r,2,)H, (©)

NOMENCLATURE
temperature in Kelvin, K
transformed temperature , K
thermal conductivity at 0 K

AN R<E

thermal conductivity (ij
m K

F(u) = E. 3 auxiliary function, dimensionless

K,

v . 1
c conductivity coefficient X
ui general orthogonal coordinates
N
q heat flux vector (W/m?)
hi scale factor
-
e unit tangent vector
ho film coefficient at O K
h film coefficient [_W__J

m? K

L(u) = = auxiliary function, dimensionless

h

o

internal heat generation (W/ms3)

g
s -
\Y/ vector differential operator del

>

A Laplacian operator
X,y cartesian coordinates
r,0 polar coordinates

A,An  constants
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