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ABSTRACT

Loops used in a program have an important effect on the ability to
understand it. This is attributed to the inherent difficulty in
reasoning about loops. In this paper, we present a knowledge-based
approach for the automation of loop understanding and
documentation. This approach uses a well-known previously
designed decomposition technique, called program slicing, to
mechanically decompose loops by analyzing their control and data
flow. Each slice of the loop results in isolating the effect of using this
loop on computing a single variable. The resulting slices are then
analyzed by utilizing patterns, called plans, stored in a knowledge
base, to generate their first-order predicate logic annotations.
Because of the mathematical basis of these annotations, correctness
conditions can be stated and verified if desired, using the axiomatic
correctness approach. Finally, we present the results of a case
study performed to evaluate our proposed analysis approach. In
this study, we design a set of plans by analyzing loops in a real and
existing program. This initial set of plans is then used to analyze
loops in other programs of reasonable sizes and practical value.
Results concerning the utilization of plans are given and discussed.
These results generally show a good usability of the knowledge base
beyond the original program.

Keywords: Loop analysis, Program slicing, Loop understanding,
Knowledgebase, Reverse engineering.

INTRODUCTION

Program understanding plays animpoltant role in nearly all software­
engineering tasks. It is vital to maintenance,
documentation, debugging, reuse and
testing. Without an adequate and deep
understanding of a program, it is impossible
to maintain it effectively. Program
understanding is indispensable for the
reuse of code components, because they can
not be reused without a clear understanding
of what they do. Testing, debugging and
documentation also require programmers to
read and understand programs carefully.

Because of the importance of program
understanding, considerable research has
been concemed with its automation. Some
research efforts were directed towards the
automation of program analysis and
understanding in general. Due to the
reported evidence that loops used in a
program have an important effect on its
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understandability [1], other research
focused on loop analysis and understanding.
Consequently, many encouraging and useful
approaches are available. These approaches
can be classified into two broad categories:
algorithmic and knowledge-based
approaches.

The algorithmic approaches [2-4]
generate formal and semantically sound
documentation (e.g., by using first-order
predicate logic) that annotates programs
according to the formal semantics of a
specific model of correctness (e.g., the
axiomatic correctness approach [5, 6] and
Mills functional correctness approach [7]).
Yet, a common limitation to these
approaches, is that they rely on the user to
provide the loop annotations. They offer
mechanical assistance only in proving the
correctness of these annotations and in
producing the specifications of the whole
program.
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Knowledge-based approaches [8-12] are
a good solution to the limitation of the
algorithmic approaches. They modularize
experts' knowledge in the form of plans that
can be accessed mechanically. In these
approaches, the generation of a component's
documentation usually involves two main
tasks: the recognition of stereotyped parts in
the program and deriving their annotations
using plans stored in the knowledge base.
Yet, some of these approaches produce
documentation which is more or less in the
form of natural text [9,10,12]. Such informal
documentation gives expressive and
intuitive descriptions of the code. However,
there is no semantic basis that makes it
possible to determine whether the
documentation has the desired meaning.
This lack of firm semantic basis makes
informal natural documentation inherently
ambiguous.

We focus, in this paper, on the analysis
by decomposition approaches which
represent good examples of the knowledge­
based approaches [8,13,14]. Analysis by
decomposition approaches breaks up the
program into smaller more tractable parts.
These smaller parts are then matched
against the knowledge base to derive their
annotations (documentation): The
understanding of these smaller parts yields
an understanding of the whole program.

More specifically, we present a
knowledge-based approach for the
automation of loop understanding. It is
motivated by the idea of analysis by
decomposition [15,16]. We investigate the
effect of using a well-known previously
designed decomposition technique called
program slicing on knowledge-based loop
understanding. A program slice consists of
the parts of the program that potentially
affect the values computed at some point of
interest. Program slices are computed by
analyzing the program's data flow and
control flow. The resulting loop slices are
then analyzed by using plans stored in a
knowledge base to deduce their annotations.
Finally, we will test and evaluate our
proposed approach on real and existing
programs.

The next section of this paper provides
the necessary background for program
slicing. The section to follow describes the
structure and design of our knowledge base,
and how the plans are hierarchically
arranged. Then, we describe the design and
structure of our proposed prototype tool,
followed by presenting an evaluation ofour
proposed approach. Results concerning the
utilization of the designed plans in analyzing
loops in different fields are discussed.
Finally, conclusions and future research
directions are given in the last section.

PROGRAM SLICING
Program slicing is a method for

decomposing a program into pieces of code
based on data flow and control flow
information. A program slice consists ofthe
parts of a program that (potentially) affect
the values computed at some point of
interest. Such a point of interest is referred
to as a slicing criterion, and is typically
specified by a location in the program in
combination with a subset of program's
variables. The task of computing program
slices is called program slicing. The original
definition of a program slice was presented
by Weiser [16], and then various slightly
different notions of program slices were
presented as well as a number of methods to
compute them [17-19].

Program slicing can help a programmer
understand complicated code and can aid in
debugging [20]. It has been used in testing,
modification [21] and maintenance [22].
Slicing has also been used as a structural
method for isolating functionalities in large
programs [3]. An important distinction is
that between a static and a dynamic slice.
Static slices are computed without making
assumptions regarding a program's input,
whereas the computation of dynamic slices
relies on a specific test case [18].
Throughout this section, we focus on static
slicing as it is suitable for program analysis
for the sake of understanding. We introduce
some basic slicing definitions. We define
how to perform intraprocedural slicing (i.e.,
slicing a program that consists of a single
monolithic procedure). Due to space
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limitations, we do not describe
interprocedural slicing and slicing in the
presence of composite data structures and
poiriters. For more details on the different
aspects of program slicing, refer to the
numerous literature that exists on this topic
(see for example References 16,17,19,20,
23, 24, 2S.

Basic Definitions
pefinition~: A digraph G is a tuple (N, EJ,
where N is a set of nodes and E ~ Nx Nis a
set of edges. Given an edge (m, n), m is said
to be immediate predecessor of n, or m E
IMP(n), while n is said to be immediate
successor of m, or n E IMS(m).Apath p from
m to n of length k is an ordered set of nodes
(no, .. , 1'lk) such that no= m, 1'lk = n, and Vi, 0
sis k-l: (n, r1i+J)EE.0
pefinition 2: A flow graph J<"'Gis a triple (N,
E, no ), where (N, EJ is a digraph and noE N

is such that Vn E Nthere is a path (no, ... , n).
no is called the initial node. Given m, n E N,
m dominates n, or m E DOM(n), if m is on
every path (no, ..., n). Given m, nE N, m is
the nearest dominator of n, or m = NDOM(n),
if m E DOM(n) and Vd E DOM(n): d E
DOM(m).O
Definition 3: A hammock graph HG is a
quadruple (N, E, no , ne), where (N, E, no)
and (N, g 1, ne) are both flow graphs. ne is
called the final node. Given m, n EN, m
inverse dominates n, or m E I DO M (n), if m is
on every path (n, ... , ne). Given m, nE N, m is
the nearest inverse dominator of n, or m =

NIDOM(n), if m E IDOM(n) and Vd E
IDOM(n): dE IDOM(m).0
Definition 4: A one entry/one exit program P
can be modeled as hammock graph, whose
nodes are the program statements, the
edges are given by the control flow,the entry
point is the initial node, and the exit point is
the final node. This gives a definition of a
program's control-flow graph. 0
Definition 5: Given n E N, the statements
influenced by n, or INFL(n), are the set of
nodes which are on a path (n, NIDOM(n)),
excluding the endpoin.ts n and NIDOM(n).
When IMS(n) contains only one element or is
empty then INFL(n) = t/J. 0

Definition 6: A node i in the CFG is post­
dominated by a node) if all paths from i to ne

pass through), where ne is the fmal node. 0
Defmition 7: Let V be the set of variables in
a program P, REF(l) ~ V are the variables
used at instruction (node) i, and DEF(l)~ V
are the variables modified at instruction
(node) i, i.e., whose values are changed as
an effect of the instruction execution. 0

Intraprocedural Slicing
The slice of a program, P, with respect to

a program location, n, and a subset of the
program's variables, V, consists of all
statements and predicates of the program
that might affect the values of variables in V
at location n [16,26]. In Weiser's terminology
[16], a slicing criterion of a program P is
defined as a tuple < n, V>, where n is a
statement in P and V is a subset of the
variables in P. The slicing algorithm
determines consecutive sets of relevant
variables from which sets of relevant
statements are derived. For each statement
in P there will be some set of variables
whose values can affect a variable
observable at the slicing criterion. The set of
such relevant variables at statement i is

denoted by Rg (1), and defined later.
The statements included in the slice by
R~ (1), i = 1, ... , n are denoted by S~.The
superscript 0 indicates how indirect the
relevance is, higher valued superscripts are
defined later. Throughout this subsection,
we will use the program in Figure 1as an
example program.
Definition 8: Let C = <n, V> be a slicing
criterion. Then R~ (1) = all variables v such
that either:

1. i = n and v is in V, or
2 i is an immediate predecessor of a node

m such that either:
a) v is in REF(l)and there is some

variable w in both DEF(l)and Rg (m),
or

b) v is not in DEF(l)and v is in Rg (m). 0
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R~ (1) represents the set of directly relevant
variables when program execution is at
instruction i (node i in the CFG).The
recursion is over the length of paths to
reach node i, where (1) is the base case. The
computation of R~ (1), i = 1, ..., n starts with

the initial valuesR~ (n) = V and R~ (1) = If for
any node i;F n. The computation of case (2a)
says that if w is a relevant variable at the
node following i and w is given a new value
at node i, then w is no longer relevant and
all variables used to defme w's value are
relevant. Case (2b) says that if a relevant
variable at an immediate successor of node i
is not given a value at node i, then it is still
relevant at node i.

The statements included in the slice by
RZ(1), i = 1, ... , n are denoted by S~. S~ is
defined by S~ = {i I DEF(l)n Rg (IMS(l));F ~.

sg includes those statements whose
execution can directly influence the values
of relevant variables for each instruction of
the program.

For the program shown in Figure 1 and
slicing criterion < la, {product}>, Table 1
summarizes the DEF, REF sets and the sets
of directly relevant variables at each node.
After the computation of R~, we obtain S~ =

{2,4,7,8}.Note that s~does not include any
indirect effects on the slicing criterion.
Generally any branch statement which can
choose to execute some statement in

sg should also be included in the slice. That
is, statement 5 of our example should be
included in the slice. The following
definitions explain how to perform this
modification.

pefinition 9: Bg = {b I INFL(b)n S~;F ~. 0
B~ includes all those conditional

statements which can choose to execute or

not execute some statements in sg. Given a
conditional statement a branch statement

criterion can be issued: BC(b) = <b, REF(b».
To include all indirect influences, the
statements with direct influence on B~

must now be considered, and then the
branch statements influencing those new
statements, etc., The full definition ofthe
influence at level j + 1 is the following.
Definition 10: '11 j~ 0:

Rh +1 (1) = Rh (1) u R~C(b) (1).

b EB~

sf +1 = {i I DEF(l)n Rf+1(IMS(l));F ~ u Bt.

Ef +1 = {b I INFL(b)n sf +1 ;F~. 0

The base case is sg, Rg and Bg the set
of conditional statements that are indirectly
relevant due to the influence they have on
nodes i in S~ . Rb +1 (1) contains variables in

Rb (1). In addition, it contains variables that
are directly relevant with respect to all
slicing criteria in BC(b),'11b E Bb. For sh',.} ,

a set Bb +1 is calculated, to include the
statements which control the execution

Sh +1 • The Rb +1 and sb +1 are non-decreasing
subsets, and are bounded above by the set
of program's variables and statements
respectively. In other words, the iteration
will stop when:'IIi: Rh +1 (1) = Rh (1) and Sh.,.1

si:= Se'

For the example shown in Figure 1, and
slicing criterion < 10, {product}>,sg andRg
were computed and their values were shown
in Table 1. We obtain Bg = {5},and BC(5)=

< 5,{i, n }>.We calculate R~C(5)'Then R~is

calculated as the union of R~ and R~C(5)'

We obtain S~ = {I, 2, 4, 5, 7, 8}and
B~evaluates to If. So the process of
calculating Se terminates.
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Program Main

begin

(1) read(n);

(2) i ;= 1;

(3) sum:= 0;

(4) product := 1;

(5) while i < = n do begin

(6) sum := sum + i;

(7) product := product * i;

(8) i := i + 1

end;

(9) write(sum);

(10) write(product)
end.

write(sum)

wlite(product)

sum :=sum+i

product:= product*j

i:= i+ 1

Figure 1 An example program and its control flow graph.

Table 1 Slicing results tor the example program of Figure 1 and slicing criterion <: 10, {product}>.

Rg
0

R~No
DEF REF INFLRBC(5)

de 1
..[~l.................,........ rP..........•....................•.. rf. .......•......................... rf. .........................1!.....................t....................................

....2' ....
..i).} ..........................• rP.•................................ rf. .............................•..• rf. ......................... [I.J:L. ...............l!?l ..................................

....3....· .J~Y.!!?J..................... t/!.................................m...............................• rf. •.....•.....•....•....•.J!-J..!.1J.............. {!,.. n-J..............................

....4....· ..fpF.0.~~!J ............. tP. .................................m................................ t? ......................... {j.).. gL ...........l!,..n-J..............................

....5....·
..'/!.. .......................... . {j.". n-l. .........................{P.~'Y.<::.tJ..~l.............~".?)..~1...........[i)..!.1J.............(pE!?1.!l.<?~J..iJ..g},...........

....6....· ..[~)E!.lJ...................l~!l.~.! ..iJ....................{P.E~Q'Y.<::'~). .!l ........... .. rf. •..•................•... {j.).. gL ..........{pE!?1.!l.<?~,.iJ..gL.........

....7..·.. .Jp.~:~~~!J ............ .fpr!?1. !l.<?~J.)1. ............{P.E!?1.!-!.<::'~)..n............. rf. ........................{i)..!.1J..............{P.r!?1.!l.<?~J..iJ..g}, ...........
....8....· .. {j.l ...........................m................................{P.!:~Q'Y.<::.t)..!1............. t? ......................... {j.).. gL ...........{pr~.~!l.<?~,.~J..m............
....g..... .. tP.......................... .. .l~)E!.lJ........................{P.E~Q'Y.<::.U.................rf. ......................... tP.....................{Pr!?1.Y.<?t}.....................
'''10''''

~ {product}{product}~~{product}
--

KNOWLEDGE BASE DESIGN
Our approach to construct the

lalOwledge base, is to organize our plans in
a hierarchy [9, 11, 27]. At the lowest level­
the leaf nodes - are plarls representing
source code constructs, and at higher levels
-- non-leaf nodes - are plans inferred from
low-level plans. Corresponding to this
hierarchy, we have two plan categories; low­
level plans and high-level plans,
respectively.

The understanding process is
approached from the perspective of plan
recognition. This process is executed in two
steps. First, one identifies all instances of
low-level plans in a given slice. Second, the
identified low-level plans are composed to
conform to the hierarchical structure of the
knowledge base and to move towards a root
node that represents a goal. In this section,
we describe the design details of our
hierarchical knowledge base. First, we
describe the basic plan structure, then we
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describe the low-level plan structure.
Finally, we will describe the high-level plan
structure. We will also explain the plan
recognition process.

The Basic Plan Structure
The basic structure of our plans (low­

level and high-level plans) is shown in
Figure 2. The basic plan structure is divided
into five fields [9, 11, 13]; plan name,
attributes, components, constraints and
documentation. The plan name field holds
the name of the plan, where each plan is
given a unique name. The attributes field
lists the attributes of the plan that are filled
in when instances of the plan are created.
For example, the attributes may be filled in
by actual variable names appearing in the
slice. The components field lists the
components of the plan and the constraints
field lists the constraints on those
components. For example, the components
may be templates of source code statements
and the constraints may be on the ordering
of those statements and on sharing of
information among them. An instance of the
plan is recognized when all of its
components have been recognized without
violating the constraints. The
documentation field contains the
information necessary to generate
documentation in a formal specification
language. First-order predicate calculus is
used to generate the documentation in a
Hoare style [6]. This is maintained in the
precondition and invariant parts of the
documentation. The precondition and
invariant parts are pattems to be
in.stantiated by the plan's attributes. In this
section, we give two plan examples. We

simplified the representation of these plans
for demonstration purposes.

Low-Level Plans
Low-level plans have the generic

template structure shown in Figure 2. The
components are template components to be
matched against the actual code of the slice.
They can match slices written in Pascal. The
template components do not contain the
Pascal delimiter ';', as it does not affectthe
matching results. Low-level plans can be
further specialized based on values that
instantiate the plan's attributes. Figure 3
shows an example low-level plan, LPi.LPi
represents a template plan for bubbling
down the maximum or minimum element in
an array. LPi has the attributes array#,
index#, rop#, final#, cop# which represent
an array variable, an index variable, a
relational operator, the limit of the array
range, and another relational operator used
for comparison, respectively.

The components of the plan in Figure3
are template components that are matched
against the slice. The subscript '0' is used to
denote initial values and the suffix '#' is
used to indicate the terms and attributes
that must be instantiated with actual values
in the code. We have constraints on the
allowable values of the components. For
example, rop# must be instantiated to a
value in the set {<=, <} and cop# must be
instantiated to a value in the set {<, <=, >,

>=}. The last constraint is on the ordering of
the components. The components should be
ordered in the same way they are listed in
the components field. This is not necessarily
an immediate precedence relation.

Plan name
Attributes
Components
Constraints
Documentation

Precondition
Invariant

unique plan name
attributes to be instantiated when an instance of the plan is created
components of the plan
constraints on the components

a pattern when instantiated gives a precondition
a pattern when instantiated gives an invariant

Figure 2 A generic plan template.
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Plan name
Attributes
Componentl~

Constraints

Documentation
LPi.i

Precondition
Invariant

LPi.ii
Precondition
Invariant

Lpi
array#, index#, rop#, final#, cop#.
1. index# := indexo#
2. while index# rop# final# do begin
3. if array#[index#] cop# array#(index# + 1] then begin
4. temp# := array#[index#]
5. array#[index#) := array#[index# + 1]
6. array#[index# + 1) := temp#

end
7. index#:= index# + 1

end
1. rop# E{<=,<}.
2. cop# E{<,<=, >, >=}.
3. Component i precedes component i + 1 Vi: 1 to 6.

cop# E {>=,>}.
indexo# rop# SUCC(final#).
indexo# ~ index# rop# SUCC(final#) 1\ PERM( array#, arrayo#) 1\

array#[index#] ~ MAX(array# rind], ind = indexo# .. index# -1).
cop# E {<=,<}.
indexo# rop# SUCC(final#).
indexo# ~ index# rop# SUCC(final#) 1\ PERM( array#, arrayo#) /\
arra # index# ~ MIN arra # ind, ind = indexo# .. index# -1 .

Figure 3 Example of a low-level plan.

Based on the value that instantiates
cop#, LPi is specialized to either LPi.i or
LPi.ii. LPi is specialized to LPi.i (bubble
down the maximum element) when cop# is
instantiated to '>' or '>==', and it is specialized
to LPi.ii (bubble down the minimum
element) if cop# is instantiated to '<' or '<='.
Thus, we have a documentation
corresponding to the specialization LPi.iand
another one corresponding to the
specialization LPi.ii. This is given in the
documentation field of LPi. For each
specialization, the precondition and the
invariant necessary for documentation are
gwen.

In the documentation field of LPi,SUCC
and PRED denote successor and
predecessor functions respectively,
PERM(array#, arrayo#) [28, Ch. 20] denotes
that array# is a permutation of arrayo#, and
MAX(array#rind], ind :: indexo# .. index# -1)
gives the maximum element of the array
having indices between indexo# and index ­
1 (and similarly MIN).

The precondition and the invariant
assert that if indexo# rop# SUCC(final#)is
true when the loop starts, then indexo# ~
index# rop# SUCC(final#) remains true
through successive iterations of the loop.
The invariant of LPi.i also asserts that
array# is always a permutation of its initial
value and that array#[index#] is always
greater than or equal to the maximum of the
elements of array# having indices between
indexo# and index# - 1. The documentation
field of LPi.iican be described similarly.

When the precondition is not satisfied,
the while loop does not execute at all. In
addition, the while loop does not execute
when the initial value of the control variable,
indexo#, equals final# (or final# + 1)and the
relational operator, rop#, is instantiated
with '<' (or '$). In such boundary cases, the
precondition is true. However, the first
clause of the invariant implies that index#
only assumes its initial value indexo#. Thus,
the range in the third clause of the
invariant, indexo# .. index# - 1, is empty
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and the invariant is effectively stating that
nothing is performed by the while loop.

Figure 4 shows a slice that can be
recognized by LPi. The attributes array#,
index#, rop#, final# and cop# will be
instantiated to 'room_array', j', '<=',
'max_rooms - i' and '>' respectively. We will
use the documentation of the specialization
LPi.i since cop# is instantiated to '>'. The
precondition and invariant will be written for
the slice after being instantiated with the

values of the attributes. Thus, the slice has
the followingdocumentation.

Precondition:
(1 S;max_rooms - i + 1).

Invariant:
(1 S;j S;max_rooms - i + 1) f\

PERM(room_array,room_arraya) f\
room_array[j]~ MAX(room_array[ind],ind

=l .. j-l).

j:=1;
while (j <= maxJooms - i) do begin

if roalll_arrayUJ > roolll_array[j+ 1] then begin
temp := room_anay[j];
roolll_anay[j] := room_array[j+ 1);
roolll_array[j+ 1J := temp

end

j := j+ 1
end;

Figure 4 An example slice recognized by plan LPi.i.

High-Level Plans
High-level plans have the same generic

template structure shown in Figure 2. The
components are composed of high-level
and/or low-level plans depending on the
plan's position in the hierarchy. Constraints
are on the sharing of information between
components. A high-level plan instance is
recognized, when all of its component plans
are recognized without violating the
constraints. Its attributes are then formed
from the attributes of its components.

Figure 5 shows a high-level plan HPi.
HPi is a high-level plan that can recognize a
slice performing an ascending bubble sort.
HPi is inferred from two low-level plans LPi.i
and LPii.i. It should be mentioned that LPii
is a plan for recognizing two nested loops. It
has specializations cOlTespond to the four
different combinations of enumerations that
can take place in two nested loops. LPiihas
the followingattributes.
index2#, index 1#: the index variables of the
outer and inner loops, respectively.
init2#, initl#: the initial values of the outer
and inner loops, respectively.
final2#, finall#: the final values of the outer
and inner loops, respectively.

rop2#, ropl#: the relational operators of the
outer and inner loops, respectively.
op2#, op1#: the operators used to increment
(decrement) index2#, indexl#, respectively.

HPi Constraints are on the sharing of
information between the two component
plans. Some attributes of the two
component plans should be instantiated to
the same values. An instance of HPi is
created when instances of LPi.iand LPii.iare
recognized and the constraints binding their
attributes are satisfied. In the
documentation field of HPi,
down_shift(fmali#) equals the identity
function if ropi# is instantiated to'S;'.
Otherwise, it equals the PREDfunction. The
first clauses of the precondition and
invariant of HPi assert that if index2a#
rop2# SUCC(final2#) is true when the loop
starts, then index2a# S; index2# rop2#
SUCC(final2#) remains true through
successive iterations of the outer loop.
Whereas, the second clauses are added to
relate the proofs of both the inner and outer
loops. More specifically, they enable the
proof of 'la f\ Eo ~ P,' for all iterations of the
outer loop, where la, Eo, and P, are the outer
loop invariant, the outer loop control
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predicate and the inner loop precondition,
respectively. The third clause of the
invariant asserts that array# IS a

permutation of its initial value. The last
clause of the invariant ensures that array#
is sorted in an ascending order.

Plan name
Attributes
Components

Constraints

Documentation
Precondition

Invariant

Hpi
array#, index2#, init2#, rop2#, fina12#, index1#, init1#, rop1#, final1#.
1. LPi.i(array#, index#, rop#, final#, cop#).
2. Lpii.i(index2#, init2#, rop2#, op2#, finaI2#, index1#, init1#, rop1#, op1#, final1#).
1. index# = index1#.

2. rop# = rop1#.
3. final# = final1#.

init2# rop2# SUCC(fina12#) /\

(Y ind: init2# $ ind $ down_shift(fina12#) : (PRED(init1#) rop1# final1#) I:~~ex2#))

init2# $ index2# rop2# SUCC(fina12#) /\

(\;find: init2# :0; ind $ down_shift(fina12#) : (PRED(init1#) rop1# final1#) I:~~ex2#))/\

PERM (array# , arrayo#) /\

(\;find: init2#:o; ind $ index2# - 1: array#(ciown_shift(final1#)I :~~ex2# + 1) ;;::

MAX(array#[ind), ind = (init1# .. down_shift(final1#)) d~~ex2#).

rop2#in {>=,>},
ropl#in {<=,<},
op2#='-',
opl# = '+'
'\.

LPi(array#, index#,
rop#, final#, cop#)

Figure 5 Example of a high-level plan.

LPii(index2#, init2#, finaI2#, rop2#,
indexl#, initl#, ropl#, finall#)

rop2#,repl#
in {<=, <}, / / rhp2IKn
op2#,opl#-/ / {'t=,<},""

='+' / reil I # in
rop~~r<wl# {>k, >} ,

/ In {~i? opi#= '+'

/ 1 ';2~' 1'1 ',:ILPii. ii LPii.iii

Figure 6 An example to demonstmte our hierarchical knowledge base structure.
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HPi fits in our hierarchical knowledge
base structure in the way shown in Figure
6. In this figure, only two high-level plans
are shown, along with the two low-level
plans. The high-level plan HPii is a plan that
can recognize a slice performing a
descending bubble sort. The solid arrows
show how high-level plans are composed of
low-level plans. The dashed arrows show the
specializations of the low-level plans. High­
level plans can also be designed as
compositions of low-level and high-level
plans.

HPi can be used to recognize the
example slice given in Figure 7. Because
this example slice is a composite one that
consists of two simple slices, it is recognized
by a high-level plan, HPi, which consists of
two low-level plans. The first step, in the
recognition process, is to recognize
instances of low-level plans in the slice.
Instances of LPi.i and LPii.i are recognized
and their attributes are instantiated as
described in the previous subssection.
Thus, the inner loop is recognized using
LPi.i. The two nested loops (without the
inner loop body) are recognized using LPii.i.
Then, these two identified plans are

composed to conform to the hierarchical
structure shown in Figure 6. The
constraints binding their attributes are
checked. Since these constraints are
satisfied, an instance of HPi is recognized.
HPi's attributes will be filled in as follows:
array#, index2#, init2#, rop2#, final2#,
indexl#, init1#, rop1# and finall# are
instantiated to 'room_array', 'i', '1', '<',
'max_rooms', T, '1', '<='and 'max_rooms - i'
respectively.

The slice is documented, using the
documentation field of HPi (given in Figure
5), as follows.

Precondition:
(1 < maxJooms + 1) 1\ (V ind : 1 :0;ind:o;

max_rooms -1 : 0 :0;maxJooms - ind).
Invariant:

(1 :0; i < max_rooms +1) 1\ (Vind: 1:0;ind
s maxJooms -1 : 0 s max_rooms - ind) 1\

PERM(room_array, room_arrayo) 1\

('Vind :1 s ind si-I:
room_array[max_rooms-ind+ 1 ]~
MAX(room_array[ind], ind = 1.. max_rooms­
ind)).

i := 1;
while i < maxJooms do begin

j:=l;
while (j <= max_rooms - i) do begin

if room_arraYUl > room_arrayU+ 1] then begin
temp := room_arrayUl;
room_arrayU] := room_arrayU+ 1];
room_arrayU+ 1] := temp

end
j := j+1

end
i := i+ 1

end;

Figure 7 An example slice recognized by HPi.
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Slicing criteria

Declarations

& loop

Figure 8 The prototype structure.

I - - - - - - - I Predicate 10;':Recognizer' .I annotatJOns
1 __ - I

IMPLEMENTATION
In this section, we briefly describe a

prototype tool that uses program slicing to
analyze loops. Our tool automatically
decomposes a loop into slices. The resulting
slices are then analyzed, using plans stored
in a knowledge base, to deduce their
predicate logic annotations. Figure 8 depicts
the structure of our prototype. The input to
the current version is in the form of a loop to
be analyzed and its declarations written in a
subset of Pascal. It is assumed that the
input Pascal program has been previously
compiled successfully.

The scanner performs the lexical
analysis, where the stream of characters
making up the loop is read and grouped into
individual. strings {tokens) having a
collective meaning (e.g., identifier, if, while).
The parser performs the syntax analysis,
where tokens are grouped hierarchically into
nested collections with collective meaning
(e.g., if expression then). Through syntax
analysis, the parser constructs the control
flow graph (CFG) of the loop, where each
node in the CFG is augmented with
information necessary to perform slicing
(e.g., variables defined and referenced at the
node). In addition, each CFG node must be
augmented with source text indicators to
the actual text (statement) represented by
this CFG node. The lexical and syntax
analysis are completely automated. The
slicer implements Weiser's slicing algorithm ..
Slicing criteria are supplied by the user.
Slices are produced automatically for each

supplied criterion. The recognizer matches
the resulting slices against the knowledge
base plans and produces predicate logic
annotations. In the current version, the
tasks of the recognizer are performed
manually.

EVALUATION
In this section, we test and evaluate our

proposed analysis approach. First, we
describe how we created the knowledge
base, to get an initial set of plans. Then, we
show how this initial set was utilized to
recognize loops in real and existing
programs of some practical use.

Evolution of the Knowledge Base
To create our knowledge base, we

performed a case study on a complete set of
loops in a real program. The program chosen
for the case study is in the domain of
scheduling university courses [29]. It has
1,400 executable Pascal source code. A set
of 62 loops are extracted with their
initializations. This is the set of loops that
do not contain procedure calls. Allfor and
repeat loops were transformed to their
equivalent while loops, and all case
statements were transformed to their
equivalent nested if constructs. The
analyzed loops are single entry/single exit
structured loops, which have the usual
programming language features such as
pointers, arrays, records, functions with no
side effects and nested loops. Many of these
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loops involve sorting, searching, scheduling
algorithms, and error messages generation.

During this study, every loop (ofthe 62
loops) was automatically decomposed into
slices corresponding to all the modified
variables in the loop. To achieve this, the
loop and its slicing criteria were given as an
input to our proposed prototype. Then, the
resulting slices were cUlalyzedin order to
manually design plans suitable for them. We
gradually populated the knowledge base
with plans. We started by the design of low­
level plans that can recognize the smallest
slices. These low-level plans were designed
to be general enough, to be used in
recognizing as much slices as possible. For
slices having larger sizes, we composed low­
level and/or high-level plans to create new
high-level plans. Some of the designed low­
level plans did not correspond to
syntacticaUy reasonable section of code.
They were designed only to show how
existing low-Ievel/high-Ievel plans fit
together, and how they are related to one
another (i.e., to show the ordering between
instances of the recognized plans). After
analyzing all the slices, we got the
previously described hierarchical knowledge
base structure. Table 2 shows the total
numbers of slices, low-level plans (LPs),and
high-level plans (HPs) resulting from
applying our analysis approach on the 62
loops.

The dark bars in Figures 9 and 10 show
the utilization of the low-level and high-level
plans during the analysis of the 196 slices.
The low-level plans were used 296 times
(78.7%), whereas the high-level plans were
used 80 times (2l.3%).The average and
standard deviation of the number of
utilizations of the low-level plans are 7 and
8, respectively. The average and standard
deviation of the high-level plans are 3.3 and
3.4, respectively. We notice that, the plan
utilizations are skewed towards the low-level
plan LPl. This low-level plan is used to
match a simple slice, that just iterates from
an initial value to a final value. Ifwe perform
slicing on the loop's control variable, this is
a common slice in almost all loops having a
single clause control condition (that

compares the control variable with a fixed
value). On the other hand, some plans are
utilized just once. These correspond to
implementations that rarely occur. The
figures also indicate that some blocks of
code are more frequently utilized than
others. This means that if we focus on a
specific domain, there is bound to be a
kernel of slices which can be captured bya
reasonable number of plans. On the other
hand , there will be also plans which maybe
used just once (as in our study). The
emphasis should be on the design ofthe
plans that cover the kernel.

Utilization of the Knowledge Base
In this section, we investigate the effect

of using the existing knowledge base,
designed for the scheduling program, to
recognize slices from other programs. Five
programs of varying characteristics were
chosen from a recent publications [30J,
where the author randomly chose these
programs for evaluation of a knowledge­
based approach that is based on
decomposition. A set of 70 loops were
extracted from these programs. The initial
step for this study, is to apply slicing on the
70 loops. Then, we examine the utilization of
our existing knowledge base and its ability
to recognize the new slices.

To provide some insight into the differences
between the five programs, will give a brief
description of each of them.
• Set of general purpose loops: These are

loops included in the programming
examples of a Pascal user manual [31].

• Scanner 1: This is a Pascal scanner
designed in an advanced programming
book [32]. It converts from characters
representing a number to integer,
processes single or double character
special strings, and recognizes literal
characters surrounded by quotes.
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•Scanner 2: It is Pascal scanner developed
by a university instructor for a compiler
design course [33]. In addition to
performing the same tasks as Scanner I, it
manipulates a symbol table.

t Students records: This program is selected
from a Pascal programming book [34]. It is
developed for a small university with no
more than 200 students. It deals with
storing some information about graduate

and undergraduate students, sorting and
printing this information.

• Linked list system: This program , which is
selected form a Pascal programming book
[34], deals with the development of a small
linked list processing system. It is a menu­
driven program that permits inserting or
deleting nodes from the list, searching the
list for an occurrence of some value, and
sorting the list according to some value.

80
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§ 60
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ro 50

.!::!
+:: 40

~ 30
~ 20
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o

DAdditional

WOriginal
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Figure 9 Original and additional utilization of the low-level plans.
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Figure 10 Original and additional utilization of the high-level plans.

Table 3 shows the number of loops
extracted and the number of executable
lines of code for each of the fiveprograms.
We have extracted a set of70 loops from a

total of 92 loops from the five programs. This
is the set of all loops within these five
programs that do not contain procedure
calls. All for and repeat loops were
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transformed to their equivalent while loops,
and all case statements were transformed to
their equivalent nested if constructs. The
analyzed loops are single entry/single exit
structured loops, which have the usual
programming language featur~s su~h as
pointers, arrays, records, functIOns Wlthno
side effects and nested loops.

We applied slicing on every loop in the
set of 70 loops on every modified variable.
We got a set of 161 slices. Table 4 shows
how this number is distributed among the
five programs. It also shows the number of
recognized and unrecognized slices using
our current set of 66 plans. It can be
noticed that the highest percentage of
recognized slices occur in Scanner 2. This is
attributed to the nature of the loops in that
program. Much of the loops include 'write'
statements, which are not included in the
slices - 'write' statements do not modify
variables, they are not included in the slice
and thus, we got slices having small sizes.
The set of general purpose loops, and the
students records have reasonable
percentages of recognized slices. A user
manual contains many stereotyped
programming concepts which were captured
by our knowledge base in the case of the
general purpose loops. As for the students
records, they contain slices similar to those
that occurred in our original program. The
other programs contain more application
specific loops, and hence slices, which could
not be analyzed by the existing set of plans.
The lowest percentage of recognized slices
occur in the linked list system and scanner
1. For the linked list system, this is because
in our plans, we did not cover specific
concepts like deleting nodes and sorting
lists. As for scanner 1, it contains loops that
are specific to the domain of scanners and
plans which recognize them are unavailable
in the existing knowledge base.

Table 3 Statistical data of the five programs.
Program 11 of11 of loops

linesSet
ofgeneralpurpose 30

loops 483
12Scanner 1

Scanner 2
65412

Student records
23610

...~\~~.~Q.!j~L~y~~~gL...............
.......'PI ......6

Total
············7"0···········

Table 4 Number of recognized and unrecognized slices.
It of11 ofIt of

Program
slicesrecopizunrecognized

ed slices
"lice"

Set of general purpose
915338 (41.7%)

loops (58.3%)Scanner 1
209 (45%)11 (55%)

Scanner 2
18126 (33.3%)

(66.7%) 9(45%)
Student records 2011 (55%)

..L.\~~~9..I.i.s.t.~y.~~~!!.l...........
.....J~..........?.l~):.ti~~J..........7.J'?§.::3~~).......

Total
1619071 (44.1%)

(55.9%)

The white bars in Figures 9 and 10 show
the additional utilization of our initial set of
plans in the recognition of the slices
resulting from the fiveprograms. From these
results, we notice that plans which were
highly used in the original program (e.g.,
LP1, LP4) are also highly used in the new
programs. Only one high-level plan (HP1)
was utilized in the new set. Most of the
plans that were used once in the original
program, were used once or not used at all
in the new programs. In addition, many of
the plans that were highly used in the
original study represent stereotyped
programming concepts that are commonly
used across different applications.

CONCLUSIONS
In this paper, we presented a knowledge­

based loop analysis approach. It is
motivated by the idea of analysis by
decomposition. The main characteristics of
our approach can be summarized as follows:
• It uses program slicing as a practical

decomposition method, to decompose the
loops into slices. Each slice captures the
effect of the loop in computing a single
variable.

• It generates predicate logic annotations.
Predicate logic annotations increase the
confidence in the documentation, since
the axiomatic correctness conditions can
be stated and verified if desired .

• It is a knowledge-based approach, that
builds a hierarchical structure of plans.
We developed a prototype tool that

implements the decomposition method. A
hierarchical knowledge base having a set of
66 plans was also designed. In the current
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implementation, generation of the predicate
logicannotations is performed manually.

Finally, an evaluation of our proposed
approach was performed. This evaluation
serves to show the effect of using program
slicing, and our plan design method on the
acquisition and development of plans in the
knowledge base. By using an initially
designed set of plans to analyze fivedifferent
programs, we demonstrated that the
knowledge base generated for a given
program is generally usable beyond that
program.· That is, using slicing and the
hierarchical plan structure can make the
plans applicable in many different slices
across different applications.

Yet, the knowledge base size is relatively
large. This is attributed to the large size of
slices. Even though the slices of a loop are
independent, each slice must include all
statements affecting the modification of the
current variable. In order to ha.veplans that
are reasonable in size, we had to design
several plans for the recognition of every
large slice. In addition, some loops specific
to the domain of the initial program required
the design of many plans to recognize their
slices (e.g., one loop required the design of 6
plans). These plans were not utilized beyond
those slices, either in the initial program or
in the fiveused programs. Thus, this caused
a considerable increase in the number of
plans.

Future research includes experimenting
with the analysis approach on programs that
are larger than the ones considered so far.
The practicability of our approach can be
greatly enhanced by trying to create
Imowledge bases that are sufficient for
specific application domains. Since slices
that appear in a specific application are
likely to appear again and again, the
knowledge base size can considerably
decrease. Thus, programs related to that
application domain can be documented in
an efficient method. Finally, our current
prototype tool needs to be enhanced to
support additional programming language
features such as procedure calls. In
addition, more work is required for the

automation of all the analysis steps, and to
make the interface more user friendly.
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