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ABSTRACT

In this paper, the effect of using different plasticity models on the
theoretical predictions of the strength and cyclic behavior of braces
is studied. Various geometrical parameters of braces, on both global
and local levels, are considered. The finite element method is
utilized considering both geometrical and material non-linearity. The
difficulty in numerical calculations arising from occurring the snap-
backs during the cyclic deformation is overcome through
incorporating the arc-length technique in the finite element
program. The results are closely examined with respect to both the
ultimate strength and energy dissipation capacity.
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INTRODUCTION

Braci.ng members are used commonly in

space trusses and offshore structures.
These structures which are subjected to
extreme environmental loadings such as
earthquake, wave and wind are normally
designed  considering  their ultimate
strength. In nature, these loadings are
repetitive, therefore, the structures and
their individual members must have a
sufficient strength and ductility under cyclic
loadings. To predict the performance under
extreme seismic loading conditions, it is
necessary to investigate the inelastic cyclic
behavior of the structures as well as their
individual members. In many instances,
the use of experimental testing to evaluate
the performance of structures under these
severe conditions is either expensive or
practically impossible. Therefore in these
cases, analytical means must be employed.
This has been the subject of intensive
investigations in recent years [1-15].

The application of finite element
method to treat the nonlinear behavior of
structures has reached such a stage that
the results obtained from these analyses
can be accepted with high level of reliability.
Also, the recent advances in computer
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technology have resulted in greater
computer storage capacity and high
computational speed. As a result, non-
linear analysis may be performed at a
reasonable cost.

On the other hand, one of the major
factors that affect the numerical simulations
of cyclic behavior of a structural member is
the choice of the cyclic plasticity model
which would simulate the real material
behavior under deformation. In this study,
three plasticity models of structural steel
material are investigated, considering
several factors such as the strain hardening,
Bauschinger effect and the cyclic hardening
of the material, namely, elastic-perfectly
plastic model, kinematic model with strain
hardening and combined  isotropic-
kinematic hardening model.

The structural member investigated in
this study is a pin-ended circular tubular
brace with several geometrical parameters,
under cyclic axial load. The numerical
results are analyzed on the bases of the
ultimate strength and energy dissipation
capacity.
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METHOD OF COMPUTATION

In this research, the finite element program

CYNAPSS1[13-15] 1is employed. The

features of this finite element program are

summarized as follows:

1) A simple four nodes quadrilateral
isoparametric flat shell element is used.
The formulation of this element is based
on the assumed displacement field
approach. The stiffness matrix of this
element is composed of bending and in-
plane stiffness. The bending stiffness
matrix is formulated based on the
Mindlin plate theory, in which the
transverse shear deformations are consi-
dered. Selective reduced integration
scheme, ie. the integration of the
different strain terms with different
orders of integration, is adopted to
prevent the transverse shear and
membrane locking [16].

2) Large rotation and small strain are
considered on the bases of Total
Lagrangian formulation which uses the
Green strain tensor and the second-Piola
Kirchhoff stress tensor.

3) The material model which was developed
by Petersson and Popov [17] and later
improved by Mosaddad and Powell [18] is
adopted as the combined isotropic-
kinematic hardening plasticity model.
This model is based on Mroz’ multi-
surface plasticity model with multi-linear
uniaxial stress-strain relationship and
Von Mises yield criterion. The actual
material properties are determined from
the virgin state (monotonically increasing
curve) and saturated state (when steady
state of the material is fully developed) of
the material. The transition between
these states of the material is controlled
by a weighting function w which is a
function of the accumulated plastic
strain. The weighting function w can be
determined through trial and error
process. - It is worth noting that this
model also has the ability to simulate
both the elastic-perfectly plastic model
and the kinematic hardening model. The
spread of plasticity is checked at four
Gaussian points in six layers across the

thickness (a total of 24 integrati
points).

4) An incremental predictor with Newton-
Raphson iterations is adopted with the
aid of displacement control to trace
complete equilibrium path. In addition,
the arc-length method [19, 20] with
either displacement or load control is
elaborately implemented to be wused
under cyclic loading. The applicability
to trace the “snap-backs” during cyclic
loading is the valuable feature of this
implementation. An automatic swit-
ching to the arc-length method based on
the current stiffness parameter is also
included. The automatic sizing of load
increment is employed based on several
criteria such as the number of required
and desired iterations, current stiffness
parameter and the number of eigen
values (negative diagonals appear in the
overall stiffness matrix). Further, an
automatic restart option has been
incorporated in order to perform the
analysis under cyclic loads. Conver-
gence of non-linear solution is contr-
olled by the Euclidean norm of the
unbalanced forces with allowable
tolerance of 0.001 or another prescribed
value.

The validity of the finite element program
“CYNAPSS1” was examined through
comparisons with experiments in references
[13-14]

NUMERICAL MODELS
All the models are axially loaded
braces having circular cross-section with
pin end conditions and subjected to eight
cycles of constant displacement amplitude

ranging from -2 Sy to +2 Eiy, where Sy is the

yield axial displacement. Due to the
symmetry, only one quarter of the brace is
analyzed. The finite element mesh division
and boundary conditions used for the
numerical analysis are shown in Figure 1.
The axial load is applied with eccentricity of
one thousandth of the length L to initiate
the buckling. Normalized parameters D/t
and % are chosen so that the influence of
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parameter can be clarified, where D is
outer cross-section diameter, t is the

ube thickness and A is the reduced

W ere the yield stress, cy,

slenderness ratio as indicated in Table 1.
'lhe uniaxial stress-strain relationships
epresenting the three plasticity models
ed in this study are shown in Figure 2,
is equal to 624.4
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N/mm? and the Young’s modulus, E, is

equal to 210000 N/mm2. The geometrical
effects are investigated through considering
the variation of the diameter-to-thickness
ratio and the reduced slenderness ratio as
indicated in Table 1.

[y Free
v=Rx=Rz=0 /
Y
Z,w / _2
Rz "
Y,v
y | u=Ry=Rz=0 \Imdiug and
Rx supporting point
X,u only w=0
t
: Figure 1 FEM mesh division and boundary conditions used in the analysis
Table 1 Description of the investigated models
Model D/t A Plasticity Model
M24-05ep 24 0.5 | Elastic-perfectly plastic model
MG0-05ep 60 0.5 Elastic-perfectly plastic model
M24-10ep 24 1.0 Elastic-perfectly plastic model
M60-10ep 60 1.0 Elastic-perfectly plastic model
M24-05K 24 0.5 Kinematic hardening model
M60-0SK 60 0.5 Kinematic hardening model
M24-10K 241 1.0 Kinematic hardening model
M60-10K 60 1.0 Kinematic hardening model
M24-05C 24 0.5 Combined hardening model
M60-05C 60 0.5 Combined hardening model
M24-10C 24 1.0 Combined hardening model
M60-10C 60 1.0 Combined hardening model
Where,
. = reduced slenderness ratio
_ L/t
nyE/ oy
. = length,
r = radius of gyration
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Figure 2 Uniaxial stress-strain relationship
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RESULTS AND DISCUSSION

Two criteria are applied to evalua

the performance of the brace under cycli
loading, namely the strengths, in both
tension and compression, and the ene
dissipation capacity. The energy dissipati
capacity is defined as the accumulate
energy dissipated per cycle. Further, its
normalized value with respect to Fy uy

referred to as normalized absorbed ene
that corresponds to the area under
normalized load-displacement curve, i.e.,

|F du / Fyuy (1)

in which,
F = The axial force
Fy = The yield axial force
u = The axial displacement
uy= The yield axial displacement

Four braces with various geometrical
dimensions are chosen to investigate the
effect of the different plasticity models on
predicting the strength and energy
dissipation capacity of the brace under
cyclic loading. The models are subjected to.
eight cycles starting from compressive
loading with normalized displacement range
of 4.0 and normalized mean displacement of
0.0.

Typical computed hysteresis load-
displacement loops for the three plasticity
models used in this analysis are shown in
Figure 3. It is worth noting that how the
snap backs could be traced during the
calculations of the subsequent cycles due to
the elaborate implementation of the arc-
length method in the present finite element
program.
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Figure 3 Normalized axial load-axial displacement

hysteresis loops

Shown in Figures 4-7 are the deterio-
ration of normalized ultimate strengths
versus number of cycles, with the different
plasticity models, for the four geometrical
cases. Generally, the compressive strength
of the brace is deteriorated significantly
with the increase of the number of cycles.
This may be due to the accumulated
local/global buckling (or deformation). The
local buck-ling reduces the full plastic
moment of the cross section and
consequently the compressive strength in
the subsequent load cycles. In the four
geometrical cases, the combined plasticity
model predicts early reduction in the
compressive strength because of the well
presentation of Bauschinger effect in this
model which causes more residual
deformation at the end of first load cycle.

As the number of cycles increases, the
combined plasticity model predicts higher
values of tensile and compressive strengths
than the other two plasticity models
because of the consideration of the
material’s cyclic hardening in this model.
The effect of cyclic hardening, on predicting
the stabilized compressive strength, is not
significant in case of high values of
diameter-to-thickness ratio and/or the
slenderness ratio. This may be attributed to
the dependence of the compressive strength
on the local buckling phenomenon in case
of high value of diameter-to-thickness ratio
and on the accumulated  global
deformations in case of high slenderness
ratio.

Figures 8-11 show the cumulative norma-
lized absorbed energy versus the number of
cycles, with the different plasticity models,
for the four geometrical cases. [t can be
noticed that, in all geometrical cases, the
combined plasticity model predicts early
reduction in the energy dissipation
capacity. This is due to the Bauschinger
effect which is considered by combined
plasticity model.
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As the number of cycles increases, in case
of small diameter-to-thickness ratio, the
energy dissipation capacity of the member
predicted by the combined plasticity model
is larger than the other plasticity models.
This is because the deformation in this case
is mostly governed by the plastic
characteristics of the material such as the
cyclic hardening which is taken into
account by the combined plasticity model.

It is noted that almost there is no
difference between the strength as well as
the absorbed energy predicted by the
elastic-perfectly plastic model and the
kinematic hardening model. This is because
the material used in this study has low
strain hardening.

CONCLUSIONS
Based on the numerical results of this
investigation, the following conclusions may
be reached;

1) The finite element program, CYNAPSS1,
has proved to be a powerful tool for
elasto-plastic large deformation
analysis of steel shell structures under
cyclic loading. Moreover, the elaborate
implementation of the arc-length
method in the program has made it
capable to trace the snap-backs during
the subsequent cycles.

2) The cyclic hardening of the material,
which is considered by the combined
plasticity model, increases the cyclic
tensile strength of the brace relatively
to the other two models. Concerning
the compressive strength, the cyclic
hardening has a significant role in case
of small value of diameter-to-thickness
ratio, where large plastic deformation
occurs.

3) The combined hardening model
predicts lower values of compressive
strength and absorbed energy during
the first few «cycles due to the
Bauschinger effect which is well
presented by this model.

4) The absorbed energy predicted by the
combined hardening model, in case of
small diameter-to-thickness ratio, is
higher than the prediction of the two

other plasticity models due to the effed
of the cyclic hardening wunder
plastic deformation.
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