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ABSTRACT

In modern industry, there are many kinds of anisotropic materials
that are natural like wood or synthetic like polymers, Please cancel,
or reinforced plastics. These non-metallic materials are superior to
metallic materials in different practical applications, because of
insulation to electricity or heat, stain-resistance, lightness, etc. This
work introduces a numerical iterative solution for pure torsion
equation of a continuously homogeneous prismatic bar, which is cut
longitudinally from a solid cylinder, having a material with
rectilinear anisotropy. The problem is constructed using a small
physical parameter, which characterizes the material anisotropy. A
mathematical model is derived using Fourier series analysis, and
the stress components are obtained as conversion expansions. A
simple technique is used to avoid singular points. A computer
program is designed, and illustrative examples for orthotropic and
non-orthotropic materials are introduced to show the effectiveness
of the suggested solution. Acceptable numerical results are
obtained, and convergence is discussed. <

Keywords: Pure torsion, Cylindrical prismatic bar, Rectilinear
Anisotropy, Stress components.

INTRODUCTION

he theory of generalized torsion was first

worked out by Voigt, and the rigorous
theory of pure torsion was developed by
Saint-Venant. There are several works on
the theory of pure torsion, and among these;
a large monograph mentioned by Lekhnitskii
(1], Mamrilla [2] and Sarkisyan[3], who
were interested in torsion on homogeneous
and non-homogenous anisotropic bodies.
The Problem of torsion on homogeneous
prismatic bar which is cut from hollow
cylinder having rectilinear anisotropy is
stated and mathematical model is suggested
to solve the problem [4]. In Reference 5, the
solution is rearranged in a numerical form
and computer program is designed to study
convergence and stability of the suggested
solution which fails i solving the problem
at the singular points where the prism's
angle equal n/2 or 3n/2 also when the
prism is cut from solid cylinder. This work is
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an improvement to the solution in Reference
4 for a prism cut from solid cylinder also
singular points were taken in consideration.

STATEMENT OF THE PROBLEM

Consider the continuously homogeneous
prismatic bar, which is cut from a solid
cylinder having radius b, the prism's cross
section is a circular sector having angle «.
The origin of coordinates is at the center of
the edge cross section which lies at XY
plane, and Z axis coincides with the axis of
the solid cylinder. The cylinder's material
has rectilinear anisotropy and the planes of
the cross sections are planes of elastic
symmetry. The forces being distributed over
the ends are reduced at either of them to a
twisting moment Mt Four stress
components out of six are zeros : cx = oy =0;=
Ty = 0, and the others are related to the
stress function y(x,y) as :
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MW(Y) and, L) = oy(x,y) (1)
ay ox

where, ox, oy and o are the normal stress

components and 1Txy, 7Txy and 1yz are the

tangent stress components. The stress

function wy(x, y) satisfies the second-order

partial diﬁerential Equation

o o 2
344»%—25:455—:\% - 6yw -29 (2)
Where ass and ass are coefficients of
elasticity and 3 is the angle of twist per
unit length [1]. The torsion rigidity C: is

given by:
C, = §§§ W(x,y).dx.dy (3)

T, (Xy)=

The stress functiony(x,y) vanishes on the
contour of the cross section

\.|/(X, Y) contour = O (4)

A SUGGESTED SOLUTION TECHNIQUE
Equation 2 is transformed from Carte-

sian coordinates into polar coordinates as
follows:
w(x, y) = ¢(r, 0) (5)
Tio(r, 0)] + 8. S[o(r, 60} = A,
where T[ | and S[ ] are two differential
operators,

T[].¢ ,18,18 ,and
ot r0r r’ 09?
o 10 i
SUaox -1 2- S 2-202C 2

ai(8) = cos(20) - Ki sin(20), and

az(0) = sin(20) + K: cos(26)

where 3 is a small physical parameter that is
always less than unity [3,4]

gy —a 2a
§5=-44"_35 , 0<% K1=—-———4L
44 +as5 44 ~ 255
43
and Ag=—-—
44 255

and the stress components, and torsion
rigidity are given as:

xz(r e) =35l n(e) Cw(r e) COLG)@ : (6-a)

r o0

6¢(r 0) sm(e) o4(r,0) L

or T or
and (6-b)

=2 i 6(r,0).dr.d0 (6-c)

domam

1,,(r,8) = —cos(9)

Solution of Equation S is assumed in the
form [2,3]

9(1,0) = n($o(1,0) +8.4,(1,0) +87.

¢y (1.0)+...c...... )=n D 8.4,(r.0) @

01,23,
Substituting from Equation 7 into Equation
5 and equating coefficients of &,

(4=0,1,2,...) we obtain the differential
equations

o] =22 =1y, @
o] = —s[q,o] =11(r.6), (9)
To5] = -5é1] = £,.0) (10)

in general ['[¢; |=-S[¢;-1]=fi(r,0) and fo= -As/n.
The boundary conditions in Equation 4 will
be:

¢J(b,6) = Oftand ¢J(r,0) = ¢j(r,a) =0

Substituting from Equation 7. into Equation
6, the stress components and torsion rigidity
will be

Ty (1, 0) = n(TOxz(r’ 0) + 3. 1:lxz(rr 0) + 8%

L[ ) T J=n D ¥.1,0) (11)

j=0,1,2,3,....
tyz(r, 0)= n(royz(r,G) + 9. t,yz(r, 0) + 32,

TayAT, S B l=a Z 8. T,,(1,0)  (12)
=0,0,2,3,....
and
C, = n(Cy # 8.0, F65.Co b0, )
=m > 3¥.C, e
=023

where the first approximation in Equations
11, 12, and 13 are _
0 (1,0) = —co5(8) 2oL O) 20(1.9) , (14-)
or 09
0,(r,0) . cos(0) 6¢,(r,0) , (14-b)
or 0

Toxe (rre) = SIn(e)
and
C. %T { §,(r,0).rdrdo (14-¢)
0 a

Now Equation 8 is solved for the first
approximation ¢o(r,0) using Fourier series
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(sine half-range expansion) for both fo and

do(r, 0) as:
> by sin(y®)
fo= X .sin(A
0" y-135,. K K
w .
bo(1,0) = - 23 Ry (r).sin(A, 6)
where by =~ , —_ﬂ_- d
11(344 +¢155)
nk
A === 15
k=% (15)

Substituting from Equations 15 into
Equation 8 and obtaining the ordinary
differential Equation
PRy 1R (1)
dr? I .dr

which has a complete solution in the form

k—Rk(r) b,  (16)

" Mg
Rp()=Cp.r X +Dy.r + V(D) (17)
and ¢o(r,0) in Equation 15 will be in the form
A -
(Cy.r K+Dpr K

[ o]
r,0)= Y +V, (1r)).sin(A.0)
Polr0d=, - R k g
where
-V, (b)
Cy =—F— D=0, Vi (0 = V. 7,
b k
and y -1 __, a zs0r
R T
$p(r.0)=By = Bk(p -p k)sm(?LkO),
k=115 =
where
_r B = —-b27r‘
p - b s () 3 S
By = ——;—— (18-a)
Kk(lk-—4)

Substituting from equation 18-a into
Equationl4, obtaining

%y () = 20 " z Bk {~sin((h — DB).L;
+sin((hy + ])8).L2} (18-b)

B
rOXZ(r,e)=—29k > Byloos(y -10) L,

5 , goene

+cos(().k +l)6).L2} (18-¢)
where
A +2) 24 M-l
1=1'(k ) 2 o _ 1 -2)
b2 bkk 2 )
D 1
COt =Byb (18-4)

Z e B
k=135,..22 (A +2)?
¢o(r,0) in Equation 18-a is substituted in the
partial differential Equation 9 which is
solved by the same technique for ¢o (1,0),
then obtaining the second approximation in
Equations 11, 12, and 13 as
$(r.8)=  T(Cp.r™M +Vy(n).sin(hp6) (19-a)

n

~Vh(b)
prn

Vn(r) = 25 Up,

7n 4C, Ay (M - 1)
Ay Unk=E(n,k)—————k2k g
o g A -2

where Cp =

+Qn,k.r2 .

A, #A,
_ Viehyg [Z(F(n ,k)— E(n,k)) ]
4- ;~2 lk(F(n k) + E(n,k))
—sin(oy ) - Kj.cos(ay ) .
]
2 sm(az) Kj. cos(az) 2Kj.7n
% Caides)

nk =

F(n, k)=

sin(a3) + Kj.cos(ar3)

o
_L 3
E("’k)'z N -sin(ay )+ Kj.cos(ay) 2K;.mn

a4 (13.{14

ar=n(n + K) + 2a,

as =n(n - K) + 2a,

Tm:% Z — sin((An-1)0)M+sin((Ain +1)0)M2(19-b)
n=2,4,6..

o2 =n(n - K) - 2a,
o4 =n(n + K) - 20,

lef—;‘ Z - cos((An-1)0)Mi+cos((An +1)0)M2(19-¢)
n=2,4,6..
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M1=24nCn r}‘"'l + Z (}vn+}\.k)Un‘k I}k'l +

k=1,3,5..

()\.n'*'Q)Qn,k T

Mz2= > (AnrUnk 1 + (An-2)Qnx 1, and
k=1,3,5..
Ck=0 (19-d)

¢1(r,0) in Equation 19-a is substituted in the
partial differential Equation 10 which is
solved by the same technique for ¢2(r,0),
then obtaining the third approximation in
Equations 11, 12, and 13 as

$,(1,8) = 3(C,,.1* +V_(r)).sin(A,0) (20-a)

~Vy ()
Cm = —-t—)Tm—— ’
V.(r)= ¥ B, ™+ ¥B,. 1™ +B,r1’,

n=2,46... k=1,35,.

Tm
A =—

o

= b = )
B, = 4Cn.7xn;(27.n lzl).E(m,n, , ;\'n ; xm

A‘n — m
~2U,, (A, + A, XA, ~DE(m,n) 2U,_,.(&, +A, XA, -1)F(mn) -4C,.A, (A, -DH_,
B=—""%x i ) tTTRoR
B -2Q, .(, +2)E(m, n) 4 2Q, y-(A, = 2)F(m,n)
e

4-22 4-27,
Vel -M)Gmy =~ Viedy (4= MM
(4=22D2+2y) (2-2)@-AD)

A=A, LA, #1E2

G, - 1-K{ ( sin(y,) | Siﬂ(Yz)J
4 Y1 Y2
_“K_l(cos(y,) 4 cos(yy) 21rm]
2 i Y2 Y1-Y2
oo, =L K} [Sin(Y3) % sin(n)j
’ % Y3 Ya
N ﬁ[ cos(ysz) " cos(y ) B anJ
2 Y3 Joo iy ¥3-Y4

vi=n(m +k)+4o., y2=n{m +k)+4a
va=n(m-k)+4o, ys=n(m +k)-4a

Qo
Qyz = Em=1%,3 .— sin((Amy — l)G).Sl +sin((hpy +1)0).5,
(20-b)

2 Fia

cos((Am —10).8; +cos((Am +10).S,
(20-¢)

+ § Bi(Am +}.,,)r)”“'l ++
n=246,...

L8
- =—
2xz" 3 m=123,..

A~
Sy = 2k .Cpp.r™m

S By(Am +A )’“k'l+ (A +2)
+ T T
k=135 2 T B3(km

S,= 3 Bl -Apn s
n=214,6,.. k=135,...
N
By(hm ~A)r K 4By -2

ihe *

° 1 Cubtm m Bbh

2
Coy =4b e
2t m=135,..Am ' 2+Am  n=246,. 2+X,

A
© By.b'k Byb?

Tka13s,. 2+hg | 4 ) e
and so on to calculate the fourth
approximation, etc,..... .

AVOIDING SINGULIRITES

The preceding solution has singularities
where sector angle oequal =n/2 or 3n/2
which deals to Ax=2. To avoid this
singularities, the solution is divided into two
parts. The first one is the summation of the
series's terms without the term at which
A=2, and the second part is the term at
which Ak=2, and Lo Hospital theorem is
applied to obtain its value.

For sector angle a equal n/2 or 3n/2
the stress functiongo(r, 6)
in equation 18-a will be in the form
bo(r,0) = ¢o(r,e)p‘t¢2 +¢o(r,9)|;‘=2 (21)
where

$0(r,0)),.; =Bo E’SBk(pz —p™).sin(A,0) » and
¢o(|',9)|;‘k=2 =B, limlk=2{Bk (92 = P"k )Sin(lke).}
-2 (o2 np)sin(20)

™ !
Therefore ¢o(r,6) in Equation 21 is
substituted in the partial differential

Equation 9 which is solved for ¢:(r,0), and
the solution is completed.
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ALGORITHM DEVELOPMENT
1- INPUT
i) Coefficients of elasticity (a4, ass, ass) ,and
angle of twist per unit length (9 ).

il) Sector's dimensions (b,a).

iii) Coordinates (r,0) of the point at which
stress components and torsion rigidity are
calculated.

2- Calculate($,Ki1) by using Equation 5,

and(n, k) using Equation 15.

3- Calculate Vi, Vk, (1),Ck) then ¢o(r, 6) by
Equation 18-a.

4- Calculate (Li1 L2}, then 7ox. using Equation
18-b, 1,,, using Equation 18-c, and Cot
using Equation 18-d.

5- Calculate (o, a2, as, a4), (F(n,k), E(n,k)),
(Unk . Qnk, Va( 1) , (An,en) and ¢o(r, 6)
by using equation 19-a.

6- Calculate (M1,M2), 1y using Equation
19-b, and 7ix using Equation 19-c.

7- Calculate (y1, y2, v3, ¥4),(Gm,k, Hm,k)
(F(m,n), E(m,n), (B:,B2,B3),Vm(r), (Am, Cm)
and ¢2(r,0) using Equation 20-a.

8- Calculate (S1=,52), 12yz using Equation 20-

b, t2xe using Equation 20-¢, and Cot using
Equation 20-d.

9- OUTPUT:
i) The stress function ¢(r,0) using
Equation 7.

ii) The stress components, tx(r,0) using
Equation 11, and 1w(r,0) using
Equation 12.

iii) Torsion rigidity C: using Equation 13.

A computer program is designed in
FORTRAN language, and runs on personal
computer. Double precision leads to faster
convergence and stability than single
precision. The following tables are chosen as
samples of the obtained results.

CASE STUDIES
In the following, all numerical values are
calculated in double precision form, all
written results are performed to the fixed
significant figures in the last two successive
approximations , anc¢ at the point where

b a.
(r,0) —(E,E)‘

EXAMPLE :

This example is introduced to show
solution's convergence and stability, for
orthotropic and mnonorthotropic materials
respectively.

a- Consider an orthotropic prism (ass=0)
having sector dimensions as; b= unit
length,a=n/4.

Tables 1 and 2 give double precision

numerical values for the first and third

approximations for stress function, stress
components and torsion rigidity against
truncation number, as in Equations 18, and

20 respectively.

Table 1 Numerical values for the first approximation for
stress function, stress components and torsion
rigidity against truncation number for
orthotropic prism.

k 10xdo k | 10xtox k 10xto | k | 10xCot

5  }0.151 7 _|-0.151 3 0.36 [ |0.711

11 }-0.1512 13 }0.1518 |7 0.366 13 |-0.7116
43 -0.15124 53 1-0.15184 P23 0.3665 29 [0.71169

07 |-0.151249 [7S |-0.15184039 0.36657 |49 |-0.711699

In Equations 19-a, to 19-d d, for
k=100, and n=48 the results ¢, ~ 00,

1,, =001020, 1, =000422, and C.=0.0 are

obtained. No more accuracy is gained from
n=48 to n=100.

Table 2 The first approximation is always independent
of the coefficients of elasticity for orthotropic
or non-orthotropic materials. k=100,
n=100

M 10%%¢2 M | 100xTax | M | 100xt2 M 10%xCae

S -0.1 14 -0.8 6 -0.5 27 }0.20

25  |0.15 66 0.88 19 -0.58 39  |-0.201

R7 -0.159 B8  }-0.889 88 -0.583  [79 ]-0.2017

49 -0.1593 100 |-0.8893 [100 [0.5831 PS5 [-0.20177

b- Consider non-orthotropic prism ass#
0.0)having sector dimensions as; b=unit
length, o=n/3, and K:i=0.1.Tables 3-5
give double precision numerical values
for the first, second and third
approximations for stress function,
stress components and torsional rigidity
against truncation number, as in
Equations 18, 19 and 20 respectively.
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Table 3 the numerical values for the first approximation
for stress function, stress components and
torsion rigidity against truncation number for
non-orthotropic prism.

k 10¢0 k 10XToxe k | 10xt0z | k | 100xCot

S |-0.24 7 1-0.232 5 10.40 9 ]-0.137

15 1F0.2409 87 1-0.23250 11 [0.402 19 |-0.13708

9 1-0.24095 |83 |-0.232504 137 0.4027 [77 |-0.137088

Table 4 the numerical values for the second
approximation for stress function,
stress components and torsion
rigidity against truncation number
for non-orthotropic prism.

N 10XTixz N 10xT1yz
12 0.23 8 0.13
36 0.237 34 0.137
86 0.2376 98 0.1372

Table § the numerical values for the third
approximation for stress function, stress
components and torsion rigidity against
truncation number for non-orthotropic prism.

M 1.0x¢2 M T2 M T2yz M Cae

7 }0.31 0.170 -0.36 11 0.1514

123 |-0.317 32 10.1702 -0.368 15 10.15144

[457 [e3) (9]

2
51 10.31789 [78 10.1728 7 103687 |53 10.151444

CONCLUSIONS
A numerical method is introduced for

solving the problem of pure torsion equation
of a continuously homogeneous prismatic
bar, cut longitudinally from solid cylinder,
having a material with rectilinear anisotropy
and a circular sector cross section. A
mathematical model is derived using Fourier
series analysis, and the stress components
are obtained as conversion expansions
dependent on a small physical parameter,
which characterizes the material anisotropy.
The solution is suitable for orthotropic and
non-orthotropic materials with acceptable
convergence and stability. Numerical
results show that:

1- Whenever the physical parameter is
smaller, the truncation error is smaller,
and the number of approximating terms
for acceptable results is fewer. Therefore,
when the physical parameter is known,
the accuracy of the solution can be
roughly defined.

2- First approximation is always
independent of coefficients of elasticity

for orthotropic or non-orthotropic
materials.

3- The series's summations for orthotropic
materials are dependent on the prism's
dimensions and independent  of
material's coefficients of elasticity.

4- Whenever dimensions are smaller the
series converge faster and Dbetter,
therefore a suitable length's unit is
chosen for small errors.

5- Personal computer needs few seconds to
calculate the above results in double
precision.

NOMENCLATURE
M;  Twisting moment
v, Stress functions
3  Angle of twist per unit length
Txz, Tyz Tangent stress components
C Torsion rigidity

t

) Physical parameter
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