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ABSTRACT

Natural frequency coefficients for five non-uniform thickness regular
polygonal plates starting from the triangular up to the heptagonal
are determined. Two different types of high precision eighteen-
degrees of freedom triangular plate bending elements are
formulated and used. Firstly, an element which has a linear
thickness variation in two perpendicular directions is suggested for
the free vibration analysis of linearly varying thickness plates. In the
second part, an element of exponentially varying thickness is
formulated for the analysis of plates that have exponential thickness
variation. In the two parts, the convergence of the results for several
cases is checked. Comparisons indicate that the results for linearly
varying thickness plates are in good agreement with those available
in the literature. However, for exponentially varying thickness
plates, the results agree well with those previously published for two
tip to root thickness ratios( hi/ho= 1 and hi/ho= 0.8 ), while, for
the third one for comparison( hi/ho= 0.5 ), there is a considerable
difference between the present results and those available in the
literature since the previously published results were obtained by
approximating the actual exponential thickness variation along the
span of the plate by linear thickness variation within each finite
element. The fundamental frequency coefficients for the five regular
polygonal plates are then determined for clamped, simply supported
and the cantilevered boundary conditions, for a wide range of
variation of the tip to root thickness ratio.
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INTRDUCTION

he determination of natural frequencies

of the free vibration motion of plates is
an essential prerequisite for their design to
operate under certain dynamic loading
conditions. Exact solutions of such
problems are possible only for a limited set
of plates which have simple geometric
shapes, certain combinations of boundary
conditions and many restrictions on their
material properties. Although several
methods of approximate solutions are
available for the study of such oscillatory
motion of plates, th¢ 'e is a distinct lack of
literature on high regular polygonal plates
such as pentagonal, hexagonal and
heptagonal shaped plates, particularly on
those having non-uniform thickness.
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In the last several decades, many
analytical and numerical methods have been
proposed to predict the natural frequencies
of tapered plates. Apple and Byers [1]
applied the enclosure theorem to study the
fundamental vibration of a simply supported
rectangular plate that has a thickness
variation in the span wise direction. Ashton
[2,3] determined both the natural
frequencies and the natural modes,
respectively, for clamped tapered
rectangular plates by using the Rayleigh-
Ritz method. Chopra and Durvasula [4] used
Fourier sine series and Lagrange’s equation
to study the free flexural vibrations of
tapered skew plates. Cheung et al [5]
presented a finite strip method for the
analysis of linearly varying thickness
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rectangular and other irregular polygonal
shaped plates. Soni and Rao [6] used a
spline technique method to predict the
natural frequencies of tapered rectangular
plates. Laura et al. [7] applied Galerkin’s
method to determine the fundamental
frequency of rectangular plates which have
linear thickness variation. Each plate was
assumed to have two edges being simply
supported and general boundary conditions
were assumed for the other two ones. They
approximated the plate deflection function
by a sinusoid multiplied by a polynomial.
Olson and Hazil [8] presented the results for
a clamped square plate that has parabolic
thickness variation by both theoretical and
experimental methods. They found a
discrepancy between the experimental and
the analytical results of about 15% in the
value of the fundamental frequency
coefficient.

The finite element method was used by
Mukherjee and Mukhopandhyay [9] to
investigate the problem of free vibrations of
both linearly and  parabolic varying
thickness  plates. The isoparameteric
quadratic plate bending element that has
24-degrees of freedom was employed. The
results for simply supported skew four-
edged plates and those for the radial
supported curved plates which have linearly
varying thickness were presented. For the
parabolic varying thickness plates, only the
case of the clamped square was considered.
The Rayleigh-Ritz procedure with optimized
exponents in the shape function was used
by Laura et al [10] to analyze the free
vibration of tapered cantilevered trapezoidal
plates. Ng and Araar [l1] applied the
variational Galerkine’s method to determine
the natural frequencies for tapered clamped
rectangular plates Cortinez et al [12,13]
applied four different methodologies which
are the optimized Kantrovich approach, the
Rayleigh-Ritz method with characteristic
orthogonal polynomial shape functions, the
Rayleigh-Ritz method with a shape function
that includes two unknown exponents and
the finite element method. They presented
results for a wide rather variation of the
governing geometric. parameters and
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boundary conditions for linearly varying
thickness rectangular  plates. The
rectangular  plates with  exponential
thickness variation were also studied by the
finite element method for the two cases of
mixed boundary conditions, the CCCF and
the CSSF combinations. It is important to
mention that, in the case of exponentially
varying thickness plates, they assumed
bilinear approximation of the thickness
variation along the span when applying the
finite element technique. The differential
quadrature method was used by Kukreti et
al. [14] to determine the fundamental
frequency of linearly tapered rectangular
plates which have several combinations of
boundary conditions.

The present work consists of two parts:
firstly, an eighteen-degrees of freedom
triangular plate bending element that has
linear  thickness variation in  two
perpendicular directions is used in the
analysis of linearly varying thickness plates.
The fundamental frequency -coefficients for
different five regular polygonal plates which
are the equilateral triangle, the square, the
pentagonal, the hexagonal and the
heptagonal shaped platforms are
determined. Three types of boundary
conditions that are the fully clamped, the
simply supported and the cantilevered are
assumed in the analysis. The convergence of
the solutions is demonstrated for some
cases of the study through using several
different mesh divisions. The results for the
square plate are found to be in good
agreement with those available in the
literature. The results for the higher order
regular polygonal plates are not found in
any source of the available literature .

In the second part, a new eighteen -
degrees of freedom triangular plate bending
element that has exponential thickness
variation is formulated. The exponential
function, by which the thickness variation
along the span of the element is
represented, is expressed in the Maclaurin
expansion form. The first five terms of the
expansion are retained and are assumed to
be accurately enough to represent the
actual exponential thickness variation. A

D8 Alexandria Engineering Journal, Vol. 37, No. 1, January 1998



Determination of Natural Frequencies of Regular Polygonal Plates of Nonuniform Thickness

study which is analogous to that made for
the linearly varying thickness plates is
executed and the associated results are
presented .

PLATES WITH LINEAR THICKNESS
VARIATION

Formulation

The general case of linearly varying
thickness plate is considered in the
formulation. The x, y coordinates and all the
deformations of the plate are non-
dimensionalized by a characteristic length
(a), which, for regular polygonal plates, is
the plate side length. The thickness of the
plate is expressed as :

h=ho(1l+ax+fy) (1)

where h is the plate thickness at any
position x, y of the plate mid-surface, ho is
the plate thickness at the origin and «, B
are thickness variation parameters, for the
two perpendicular directions x, y, called
taper ratios. The geometry of the plate is
shown in Figure 1-a .

Using Equation 1, the plate bending rigidity
D of the plate will be given by :

D=Do(1+oax+py)? (2)

where Do=E ho®/12(1-v2) is the flexural
rigidity at the origin with E is the Young’s
modulus of elasticity and v is the Poisson’s
ratio .

The 18-degrees of freedom tapered
triangular plate bending element will be
used in the analysis. The six nodal variables
at each of the element three vertices are the
transverse displacement wi, the rotations
Wxi, Wyi and the curvatures wixi, Wxyi, and
wyi, (i = 1, 2, 3). The transverse
displacement field w within this element is
expressed in the general form as follows :

w(x,y)={A}{a} (3)

where A is a column vector its elements are
those of a complet quintet polynomial
expressed in terms of the oblique (area)
coordinates &, n .

AIT={1 & n & &En n2.. E5....n%}

v
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b. The area coordinates

Figure I The global and the local system of axes

o is a column vector consists of 2lai ‘s
interpolation functions to be determined
and the superscript T denotes the transpose
of a matrix or a vector.

Detailed formulation of both the stiffness
and the mass matrices of such an element is
analogous to that presented by
Jyachandrabose and Kirkhope [15]. Some
modifications to their formulation are made
by the writer and could be briefly indicated
in the following points :

e The element stiffness matrix was
obtained by pre and post multiplying one
of two basic matrices by the other. The
(21 x 21) of these two basic matrices,
which was denoted by the F- matrix in
equation. (7) in reference [15], was given
by a long subroutine which generates
this matrix element by element. A simple

Alexandria Engineering Journal, Vol. 37, No.1, January 1998 D9



algorithm for generating this matrix was
constructed by the author, for the
uniform thickness element, and was
given in Reference 16.

e For all the finite elements to which the
plate is subdivided, it was required to
know, explicitly, the thickness of the
plate at each node, to generate the
element matrices in Reference 15. In the
present work, such requirement is
avoided by expressing the thickness at
any point in the mid-surface of the plate
as a function of its spatial coordinates
and the plate taper ratios.

Transforming the X, y coordinates
into &, n coordinates one obtains :

X=Xs+X13&+ X3 1 (4-a)

y=y3+yis & +yaan (4.b)

where X13 = X1 - X3, Y13 = Y1 - Y3, X23 = X2 -
X3, y23 = y2 - ya and 1,2,3 are the three
vertices of the triangular element, (see
Figure 1-Db).

Substituting x, y from Equation 4 into
Equation 1, the following expression for the
plate thickness is obtained:

h=ci+c2&+can (5)
where
c1= 1+ axa + fBys c2 = axia + Pyis

and €3 = aX23 + Py2s

Also, the plate bending rigidity will be given
by

o

D = Do

M

. G GHspak (6)

o
i}

where Gx are constants depending on the
taper ratios and the spatial global
coordinates of the element vertices. They are
multiplications of ¢, ¢z and ca.

Using Equations 5 and 6, complete
formulation of the element matrices
analogous to that given in References 15
andl6 could be completed. The derivation of
the equations of motion and the
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substitution of the boundary conditions will
not be written here since the finite element
method is now a well established technique.

Numerical Results and Discussion

Although the formulation of the tapered
triangular plate bending element which
used here considered the more general case
of thickness variation, where the thickness
is allowed to be varying in two
perpindicular directions, the cases studied
here concern the plates whose thickness is
varying only in the span-wise directions; i.e.
the taper ratio in the chord-wise direction of
the plate (o) is considered to be zero, while
that in the span-wise direction (B) is
assumed to be varying in a certain range.
The Poisson’s ratio v is taken to be 0.3
throughout the calculations.

In Tables 1 and 2, convergence of
natural frequency coefficients for the first
four modes of free vibration has been
studied. The results are presented for both
tapered square plates which have rigidly
clamped edges and those having simply
supported edges, respectively. Three
different mesh divisions (N = 4, 5, 6 ) which
give subsequent numbers of elements of 32,
50, 72 are used. As could be shown,
monotonic convergence is achieved through
increasing the number of the elements for
both cases of clamped and simply supported
plates. In order to check the accuracy of the
present solutions, the results are compared
with those obtained by Apple and Byers [1],
Ashton [2], Sanzi et al. [13] and Kukriti et al.
[14] for two different values of the taper ratio
B. The results are found to be in good
agreement with those of different sources.

Before undergoing the computational
work of the high order regular polygonal
plates, the convergence and the accuracy of
results of such plates are checked. The
fundamental frequency coefficients for the
uniform thickness pentagonal, hexagonal
and heptagonal plates are presented in
Table 3. The total number of finite elements
to which a plate is subdivided can be
obtained from the multiplication N20 where
N is the mesh division number ( the number
into which a plate side is divided ) and O is
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the order of the plate (O =5, 6, 7). As in the
case of the square plate, monotonic
convergence is achieved through increasing
the number of the elements. The results
agree well with those given by Laura et al.
[17,18].

Table 1 Results for tapered square plate with clamped

edges

B N A1 ha As e
0.0 6 36.00 73.49 73.59 109.00
Ref. [13] 35.99 73.39 73.39 108.22

[14] 36.01 - - .
4 39.52 80.65 80.78 119.74
0.2 S 39.51 80,56 80.63 119.09
6 39.51 80.55 80.61 119.07

2] 39.52 : - .
[13] 39.51 80,52 80.59 118.87

[14] 39.55 - - -
4 42,93 87.47 87.73 130.22
0.4 S 42.91 87.34 87.57 129.48
6 42.91 87.33 87.56 129.46

[2] 42.93 - - -
[13] 42.91 87.28 87.53 129.22

[14] 42.04 . s !

Table 2 Results for tapered square plate with simply
supported edges

B N A A2 A3 Ad

0.0 6 19.74 49.31 49.34 | 78.73
Ref. 19.74 49.35 49.35 | 78.96
[13]
[14] 19.75 - - -

4 | 21.69 54.15 54.16 | 86.52
0.2 S | 21.69 54.16 54.19 | 86.68
6 | 21.69 54.15 54.19 | 86.67

[1] 21.69 . . -
[13] 21.60 | 54.16 | 54.20 | 86.75
[14] 21.70 - - .

4 23.60 58.72 58.89 | 94.24
0.4 S | 23.61 58.76 5891 | 94.30
6 | 23.61 58.76 58.90 | 94.30

[1] 23.61 = . :
[13] 23.61 | 56.77 | 58.93 | 94.38
[14] 23.62 - : .

Table 3 Convergence of fundamental frequency
coefficients for uniform thickness regular

polygonal plates
N Order of the polygon
S 6 7
(| SS C SS C SS
2 8.10 0.47 222 1 °6.77 8.79 4.80
3 9.59 0.87 2.91 7.00 9.10 5.04
4 9.78 0.97 294 | 7.07 9.13 4.99
S 9.81 0.99 - - - -
[17] 9.96 .01 12:850 07118 9.06 5.06
18] 9.85 .15 | 13.08 | 7.64 | 9.62 2

Most of the results presented here
for high order regular polygonal plates of
linearly varying thickness are new in
literature. In Table 4, the fundamental
frequency coefficients of the five regular
polygonal plates, starting from the triangular
up to the heptagonal are listed. The
variation of the taper ratio p is taken to be -
0.5 < B < 0.5. As shown, for the first four
polygonal plates, the increase of the taper
ratio in the selected range results in
associated increase in the value of the
fundamental frequency coefficient.
However, for the heptagonal plate,
increasing or decreasing the thickness along
the span of the plate leads to corresponding
decrease in the value of the fundamental
frequency coefficient. Similar effects of
thickness variation on the results are
happening in the case of simply supported
plates as shown in Table 5. The results for
the cantilevered plates are given in Table 6.
The fundamental frequency coefficient for all
of the five polygonal plates is found to be
decreasing with the increase of the taper
ratio through the entire range of its
variation. For such type of support, the
effect of thickness variation on the value of
A1 becomes more significant as the order of
the polygon increases. The limits of
percentage variation of the value of i; due
to the variation of the taper ratio f, for the
three cases of different boundary conditions,
are given in Table 7. This percentage ratio is
calculated by considering the value of 1; of
each uniform thickness plate as a base.
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Table 4 Fundamental frequency coefficients for Table 6 Results for cantilevered regular polygonal plates
clamped tapered regular polygonal plates
B Order of the polygon B Order of the polygon
3 4 5 6 7 3 4 5 6 7
.05 | 8724 | 26.30 | 1220 | 6.65 | 867 05 | 917 | 3.77 2.11 144 | 1.36
- 0.4 | 9.10 | 369 2.02 1.32 | 1.23
-0.4 90.38 28.38 14.01 8.33 8.87 03 9.05 3.62 105 195 110
-0.3 93.45 30.37 15.66 9.77 9.01 0.2 9.00 3.56 1.90 1.20 0.98
02 | 96.46 | 3230 [ 17.21 | 11.09 | 9.09 0.1 | 896 | 3.52 1.86 1.16 | 087
0.1 | 99.42 | 3417 | 1869 | 1214 | 9.14
00 | 892 ] 347 | 182 [ 112 | 077
00 [ 10233 [ 36.00 | 19.81 | 12.94 | 9.13 01 [ 889 344 180 | 1.10 [ 067
02 | 8.86 | 3.41 137 1.08 | 057
01 | 10520 | 37.77 | 21.33 | 14.12 | 9.03 03 | 884 | 3.38 1-;4 1.06 | 047
= : 04 | 881 | 335 1.73 1.04 | 0.38
02 | 108.02 | 39.51 | 2267 | 1581 | 8.97 W T T e
03 | 11081 | 41.21 | 2398 | 16.92 | 885
04 | 11357 | 4201 | 2526 | 17.98 | 8.68 : :
: As shown, for the first four polygonal
05 | 116.30 | 44.52 | 26.52 | 19.03 | 8.40 : :
plates this ratio becomes larger as the order
of the plate increases for the different three
cases of boundary conditions. Also, the
. effect of thickness variation on the value of
Table § Resuits for simply supported regular z
polygonal plates L1 for these four polygonal plates is found to
be large in the two cases of clamped and
B Order of the polygon simply supported boundary conditions.
% . - = - However, for the heptagonal plate, the effect
o5 | 4502 | 1460 | 685 | 360 | 483 of thickness variation is found to be serious
0.4 | 4663 | 1567 | 7.71 | 4.47 | 489 in the case of the cantilevered plate, while, it
0.3 | 48.22 | 1672 ) 854 | 516 | 493 is small for the other two types of boundary
gf ;?'fg i;;’: 1963130 232 :gg conditions. From the presented results, one
' = == : : ' can conclude that the expectancy of the
00 | 5273 | 19.74 | 1099 | 7.07 | 4.99 behavior of the fundamental frequency
coefficient due to the linear thickness
01 | 5424 | 2072 ) 1160 | 7.68 | 4.98 variation 1is difficult since the natural
02 1 55 e e L frequencies of a plate are depending on both
03 | 5723 | 22,65 | 1305 | 887 | 4.93 ; .
YREET G e e its stiffness and mass whose values are
05 | 6017 | 2a.48 | 1447 | 1003 | 4.81 affected by any thickness variation.
Table 7 Limits of percentage variation of the value of A: resulting from linear thickness variation.
Boundary
Condition Order of the Polygon
3 4 5 6 7
B -0.5 | 0.5 05 | 05 02500 0% -0.5 | 0.5 050|005
Clamped 147 | 187 | 26,90 [ 237 ] 3884 [ 339 | -486 | 47.1 | 5.0 | -8.0
S.Supported | -14.6 | 14.1 | -26 | 24 | -37.7 [ 31.7 | -478 | 419 | 32 | -36
Cantilevered | 2.8 | -1.5 | 86 | 37| 159 | 60 | 286 | -80 | 76.6 | -63.6
D12 Alexandria Engineering Journal, Vol. 37, No. 1, January 1998
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PLATES OF EXPONENTIALLY VARYING
THICKNESS
Formulation
The thickness variation along the span of
the plate is defined by
h=hoel (7)

where ho is the plate thickness at the origin
(see Figure 2)

z}

od S ) "‘i
) o e

Figure 2 The exponential thickness variation

Expanding the exponential function in a
Maclaurin expansion form and retaining
only the first five terms of the expansion,
one obtains:

h=ho{ 1+fBy+ % B2y2 + % B3y3 + _21_4 Bay4 } (8)

According to Equation 8, the bending
rigidity of the plate will be given by

D=Do e¥¥=Dof1+3By+4.5p2y? +4.5 B3y3 +3.375p44} (9)

where Do is the plate rigidity at the origin
and it is as defined earlier.
Transforming y into & ,n coordinates
according to Equation 4-b and substituting
into Equation 8, the following expression of

the plate thickness is obtained:
15

h=ho 3 Rk&mknqnk (10)
k=1

where Rk are constants depending on the
parameter B and the spatial y-coordinates
of the element vertices.

Also, substituting y from Equation 4-b into
Equation 9 and retaining only the terms of
degrees of B not higher than the fourth, one
obtains the following e. pression of the plate
flexural rigidity:

15
D=Do ¥ Sk& mkq ok (11)
k=1

where the constants Sk are multiplications
of the parameter  and the spatial y-
coordinates of the element vertices

Using Equations 10 and 11, the derivation of
both the element stiffness and the element
mass matrices can be completed as
explained in References 15, 16.

Numerical Work and Discussion

In the formulation of the element
matrices, the exponential thickness
variation was expressed in the Maclaurin
expansion form with retaining only the first
five terms. The accuracy of such
approximation may be checked as follows:
Supposing that the plate considered is a
square, the thickness of the plate root is ho
and that of the plate tip is h: while the y-
coordinate of the tip is y1 = 1.0, then, the the
parameter B is given by :f =( In hi/h)/y:.
For a plate of tip to root thickness ratio of
2.0, B = In2=0.6931471. The value of this
ratio calculated from the first five terms of
Maclaurin expansion is e 0691471 =
1.9984956. The percentage error due to the
approximation is about -0.075%. For a tip
to root thickness ratio of 0.5, the
corresponding percentage error is about
0.239%. Therefore, from an engineering
point of view, this approximation may be
considered accurate enough to represent
the actual thickness variation for the
selected range of variation of § which will be
(In2)/y12p2(In0.5)/y:

To check the convergence and the
accuracy of the present work, the first five
frequency coefficients for the square plate
that has two different combinations of
boundary conditions are determined and
given in Tables 8 and 9. The symbols C, S,
and F denote clamped, simply supported
and free, respectively. For the two cases of
boundary conditions which are CCCF and
CSSF, the results are in good agreement
with those previously published by Sanzogni
et al. [12] for both the uniform thickness
plate (hi/ho = 1.0) and for the plate of tip to
root thickness ratio of 0.8. However, for the
plate of tip to root thickness ratio of 0.5, the
present results converge to values which are
greater than those given in Reference 12.
The percentage increase in the values of the
fundamental frequency coefficients of the
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present results are about 22.4% and
15.3% for the two cases of CCCF and CSSF
boundary conditions, respectively. It is
important to mention that the
approximation of the thickness along the
span of the plate in Reference 12 was
considered to be bilinear. This means that
linearly varying thickness finite elements
were used to approximate the actual
thickness variation along the span of the
plate. The bilinear approximation may be
reasonable for plates of smooth thickness
variation (e.g. hi/h, = 0.8) if fine mesh
divisions are used. However, for plates of
sharp thickness variation (hi/ho = 0.5), it is
believed that such bilinear approximation is
not convenient. This may be an explanation
of the divergence between the present
results and those given in Reference 12, for
plates of tip to root thickness ratio of 0.5. In
Table 10, the results for the rectangular
plate of aspect ratio of 2.5 are presented
and compared with those given in
References 12. The aspect ratio is equal here
to the value of y:. The present results agree
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well with those of References 12 for the two
tip to root thickness ratios of 1.0 and 0.8.
for the ratio hi/h, = 0.5, the
percentage increase in the value of 1, of the
present results is about 29% and 24%, for
the two cases of the
conditions,

However,

boundary

mesh division

smaller,

Table 8 Frequency coefficients for square plate with CCCF boundary conditions.

CCCF and CSSF
respectively. The
corresponding percentage increase of Aiis
found from Table 11. to be about 8.5% and
4.3% for a plate of aspect ratio of 0.4. The
used for the calculations in
Reference 12 was chosen to be 10 x 10 for
the two different aspect ratios. This means
that, for plates of small aspect ratios, where
the width of each finite element becomes
bilinear approximation of
thickness variation, as expected, is better
than that of the plate of large aspect ratio
and its results will be more reasonable. In
order to maintain the accuracy of the finite
element procedure, the mesh divisions used
here for the two plates of aspect ratios of 2.5
and 0.4 were 4x10 and 10x4, respectively.

msrmas.

Hi/ho N A1 Aa As Ae As
Ax4 23.05 30.03 63.30 76.87 80.78
1.0 555 23.92 40.01 63.28 76.76 80.65
6x6 23.04 20.00 63.26 76.72 80.61
Rel 12 ] 23.93 30.01 63.26 76.70 80.60
x4 20.42 35.78 53.57 69.04 71.61
0.8 555 20.44 35.77 53.55 68.96 71.50
66 20.42 35.76 53.54 68.92 71.47
12} 20.40 35.76 3.52 68.90 71.50
%x4 7.96 31.37 46.49 59.90 62.15
0.5 5x5 7.99 31.36 46.47 59.82 62.06
6x6 7.05 31.35 46.45 50.80 62.03
121 4,67 28.38 37.13 54.90 55.30
Table 9 Frequency coefficients for square plate with CSSF boundary conditions.
h: /b, ] M A2 As A As
2%4 2.68 33.07 41.7 63.06 72.46
1.0 5x5 2.65 33.06 41.7 63.03 72.42
626 2.66 33.05 41.7 63.01 72.40
Rel[12 | 2.68 33.06 41.7 63.04 72.40
44 10 29.79 35.50 56.08 20
0.8 555 .18 20.79 35.59 56.00 65.17
66 14 20.78 35.59 56.00 65.14
[12] 15 29.80 35.58 56.00 65.10
%%4 0.05 26.24 31.03 48.77 56.57
0.5 5x5 0.11 26.25 31.04 48.76 56.53
66 0.00 26.24 31.01 48.74 56.52
[12] 8.67 24.03 25.34 43.65 52.10
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Table 10 Results for rectangular plates of aspect ratio=2.5

“Boundary hi/ho * Xa TAS Aa As
Condition
1.0 22.52 24.65 29.22 37.00 48.24
12T 22.53 24.60 29.20 37.10 .00
CCCF 0.8 .86 21.81 26.01 32.99 3.06
[12] 8.80 21.80 26.00 33.10 3.00
0.5 6.27 i 22.57 2861 37.28
[12] 2.60 .50 2 26.10 34.00
1.0 10.18 3.60 20.09 29.62 39.64
[12] 10.19 3.61 20.12 29.70 39.70
CSSE 0.8 8.64 2.09 7.90 26.43 33.19
[12] 8.65 2.07 7.01 26.50 33.20
0.5 7.50 .46 .02 22.89 61
[12] 6.05 .36 4.03 —20.80 22.30
Table 11 Results for rectangular plates of aspect ratio=0.4
T Boundary hi/ho AL A2 As Ae As
Condition
1.0 37.04 76.13 4.57 222359 92.80
[12] 37.08 76.17 34.80 52.40 3.10
CCCF 0.8 34.95 66.78 5.81 [0.46 74.3
—[12] — 34.68 66.63 5.90 [0.40 74.
0.5 32.89 60.02 PIRE] 24.17 93.69
[12] 41 01.45 9.07 7 30.00
1.0 30.62 08.11 05.58 49.49 3100
[12] 30.62 58.09 05.60 49.40 73.00
CSSF 0.8 29.59 52.08 .84 38.03 R
[12] 29.35 51.97 91.83 37.90 9.00
0.9 28.61 47.67 .63 22.09 30.46
[12] 27.42 42.24 69.27 8.50 6.20

A study, which is analogous to that
made earlier in this paper for the linearly
varying thickness regular polygonal plates is
executed for the exponentially varying
thickness plates. In Table 12, the
fundamental frequency coefficients for the
five clamped regular polygonal plates are
presented. The selected range of variation of
B is determined by (In 2 )/y: 2 B2(In
0.5)/y1. Itis found that, increasing the tip to
root thickness ratio from 0.5 up to 2in
equal pitches, results in the increase of the
value of A1, for the first four polygonal

plates. However, for the heptagonal plate,
where the aspect ratio is the larger one (y; ~
2.19 ), the value of A1 decreases as the tip to
root thickness ratio increases. Similar
variations of A: with the tip to root
thickness ratio for the first four regular
polygonal plates is found to be occur in the
case of simply supported boundary
conditions as shown in Table 13. For the
simply supported heptagonal plate, the
variation of the value of A1 due to the
thickness variation is very small .

Table 12 Fundamental frequency coefficients for clamped regular polygonal plates of exponentially varying thickness

hi/ho Order of the polygon
3 3 5 6 7
0.5 82.14 27.67 539 0.01 G.19
0.6 86.63 28.29 6.08 0.30 0.18
0.7 91.05 30.13 712 0.99 5.17
0.8 95.13 32.18 8.18 1.73 3.16
0.9 O8.87 34.11 9.17 2.45 9.15
1.0 T 10233 | 36.00 | 19.81 ] 12.94 I 9.13
) 08.57 30.41 21.82 4.37 0.12
4 4. 42,53 23.37 5.51 9.10
6 g, 45,390 24,79 6.56 0.08
8 23.65 48.01 26.09 752 9.06
2.0 27.83 50.43 27.29 8.41 9.05
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Table 13 Fundamental frequency coefficients for simply supported regular polygona plates of exponentially varying thickness

GHAZY

hi/ho Order of the polygon
3 q 5 [ 0y

0.5 42.59 B 10 - 33 5.38 5.015
0.6 44.73 [5.53 N 5.57 5.001
0.7 46.98 6.53 0.27 5.9 993
0.8 49.09 7.64 9.83 6.33 089
0.0 51.04 8.68 10.35 6.7 087
1.0 [ 52.86 [ 19.73 I 10.99 I 7.07 ] .986
12 56.10 21.64 11.78 5] 4.986
1.4 50.17 23.38 2.63 8.38 089
1.6 61.88 24.93 3.42 "8.96 4.995

8 64.38 26.53 .15 9.50 5.001
2.0 66.60 27.93 83 10.01 5.009

The results for the cantilevered regular
polygonal plates are given in Table 14. Itis
found that, monotonic increase of the tip to
root thickness ratio from 0.5 to 2 leads to
associated increase in the value of 1, for all
the polygonal plates, except that of the
square plate, where some disturbance in the
value of A1 occurs. The -cantilevered
heptagonal plate is found to be the more
sensitive one for any thickness variation.
The limits of the percentage variation in the
value of A1 for the exponentially varying
thickness plates from that for the

corresponding uniform thickness plates are
calculated and put in Table 15. As shown,
the percentage variation in the value of 1,
for the first four polygonal plates are large in
the two cases of clamped and simply
supported boundary conditions, while, they
are small for the cantilevered support. For
the heptagonal plate, the variation in \; is
small in the first two cases of boundary
conditions, however, it is very large and
reaches about 50% for the cantilevered
case.

Table 14 Fundamental frequency coefficients for cantilevered regular polygonal plates of exponentially varying thickness

hu/ho Order of the polygon
3 4 S 6 7.
0.5 9.04 3.44 .94 22 15
0.6 9.02 3.62 91 .20 .04
0.7 9.01 3.72 .89 .18 0.95
0.8 8.99 3.63 .87 16 0.88
0.9 8.95 3.48 .85 14 0.82
1.0 | 8.92 | 3.47 | 1.82 | 1:12 | 0.77
v 8.83 3.40 1.78 .10 0.68
4 8.75 3.33 1.74 .07 0.62
.6 8.65 3.28 T .04 0.57
.8 8.56 3.21 .69 02 0.53
2.0 8.49 3.14 .65 0.99 0.49

Table 15 Limits of

percentage variation of the value of A resulting from exponential thickness variation.

Boundary
Condition Order of the Polygon
3 { 4 | S | 6 | 7
hi/ho 05 T "2 105 [ 2 | “C5 il s:s i R - .-
Clamped -197 | 249 | -231 [ 401 | -223 | 378 | -226 | 423 | 0.65 [ -0.88
S.Supported -19.4 | 262 | 235 ] 416 | -242 | 400 [ 239 [ 416 [ 06 | 05
Cantilevered 14 1 -48 | -09 [ -95 [ '6i6 e aisoniciisso miss s
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Determination of Natural Frequencies of Regular Polygonal Plates of Nonuniform Thickness

CONCLUSION

Two eighteen-degrees of freedom
triangular plate bending elements are
formulated and used in the free vibration
analysis of five regular polygonal plates. The
results for the linearly varying thickness
plates are found to be in good agreement
with those previously published. However,
for the exponentially varying thickness
plates, they agree well with those available
in the literature for tip to root thickness
ratio of 0.8, while, they are different from
those corresponding to tip to root thickness
ratio of 0.5. The effect of thickness variation
on the fundamental frequency coefficient is
found to be pronounced for the first four
regular polygonal plates with clamped or
simply supported edges. For the heptagonal
plate, this effect is small in the two cases of
clamped and simply supported boundary
conditions while, it is found to be large in
the case of the cantilevered support.
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