COMPUTER AIDED INTERACTIVE PROCESS PLANNING FOR TURNING (CAIPP)

M.R. Abou-Zeid*, M.A.S houman** and S.M. Amaitik*

* Industrial Engineering Department, Garyounis University.

** Industrial Engineering Department, Zagazig University.

ABSTRACT

Computer aided process planning plays an important key role in computer integrated manufacturing (AIM). There are three approaches in computer aided process planning-variant, generative and semi-generative. The generative approach is more suitable to CAD/CAM integration because it can synthesize a process plan. The objective of the present work is to introduce a generative computer aided interactive process planning (CAIPP) procedure for the operation sequence planning of turned parts. This system is designed and created using Microsoft Visual Basic 3 under windows. The utility of the developed system is demonstrated by producing Planning sheets for a large number of example parts depicted in working drawings obtained partially from industry. For use in the CAIPP system, mathematical models are developed for the determination of the cutting speeds, and for calculating the power constants for a wide range of practical cases. Finally, the strategy to be used for developing further CAPP systems as a component of CIM is presented.

Keywords: Process planning-CAPP systems-Computer integrated process planning

INTRODUCTION

the preparation of planning sheets for I turned parts by conventional means requires a skilled planner. Planning involves tedious calculations of cutting times, reference to tool files, cutting data, standard times and material and machine files. Planning sheets produced manually are frequently inconsistent and incomplete. Computer Aided Process Planning been recognized as playing a key role in Computer Integrated Manufacturing (CIM). Altig and Zhang [1] presented an overview aided process planning for computer systems. In that work, 156 CAPP systems are listed with general information such as the characteristics of the, systems, the domain planable workpieces, programming languages, references and developers etc.. A CAPP system was developed by McDonnell Douglas Automation Company [2]. It is a database management system and is developed as a research tool to demonstrate the feasibility of computer assisted process planning, with logic based on group technology methods to classify code parts. SAPPAS (Automated Process Planning and Selection) System is developed by Wysk [3]. It is Known as a generative CAPP system with the description of the detailed technological information of each machined surface by means of special code.

Automatisch Arbeits Planerstellung (AUTAP and AUTAP-NC) systems were developed by Eversheim *et al.* [4]. The only difference between the two is that AUTAP is for generation of a process plan and AUTAP- is for generation of the part program. They are of the most complete generative process planning systems. Totally Integrated Process Planning System was developed by

Cheng et al. [5]. This system integrates CAD and generative process planning into a system utilizing the AI and unified tree approaches. Experimental decision Planning System (XPS-1) was developed by UTRC [6]. This system is a prototype generative process planning system. It is designed to provide a basic framework for advanced generative process planning. XPLAN is an expert process planning system that was developed by Joshi [7]. This system is based on DCLASS decision tree logic processing sytsem. It Uses DCLASS tree structures for storage and handling of Knowledge. The knowledge is represented in terms of rule-based approach. TURBO-CAPP is one of the most intelligent process complex planning systems that has been developed by Wang and Wysk [8]. The system consists of five machine surface identification. process selection and sequence, NC code generation, knowledge acquisition, database management. Know-how and Knowledge Assisted Production Planning System was developed by Iwata and others [9]. It is one of the CAPP systems emphasizing special production know-how and experience. It consists of foursubsystems; CAD interface and user input subdecision making sub-systuem, Know-how and database, and Know-how acquisition sub-system. A comprehensive CAPP system under the CIM circumstance was developed by Xingling et al. [10]. It consists of three sub-systems; retrieval, variant, and expert system. This system can handle new parts or parts that have been machined before. Also, The NC instructions of this part are obtained by assembling each feature macro-NC program in the CAM software. A neural network approach for CAPP to automatically select manufacturing datums for rotational parts on the basis of shape of the parts and tolerance the constraints has been developed by Mei et al. [11]. A back-propagation algorithm is used and some experiments are conducted. An effective method that uses fuzzy sets and fuzzy decisions to create optimal process plans for metal cutting manufacture has

been presented by Zhao [12]. In that method, a model alternative process plans is proposed and fuzzy decisions are applied to the model to select optimal process plans according to certain criteria and constraints. KOMATSU Ltd. [13] developed a computer for assembly process based system planning. It has some functions, such as estimating assembly work time, making work sheets, and arranging process. In this system, documents can be easily made, maintained and applied to the similar model. Kayacan et al. [14] presents an optimized process planning system for rotational parts. The model of a part is drawn by using a CAD module prepared for This purpose. After the feature recognition machining module. operations determined and the cutting tools are selected by using the knowledge base and machining topology. An expert process planning and filtering system has been developed by Gulesin [15]. The system employs forward planning strategy. After operation the machined region is each removed and a new intermediate generated. A part model description scheme called face-oriented neighboring graph has been utilized to represent blank, finished, and intermediate models within graph database. A theoretical approach is proposed by Huang et al. [16] to systematically solve the setup planning problem and to be more efficient and effective for achieving tolerance control, high precision in machining processes, and stability during machining. The design specification of a part is represented as a graph. The problem of identifying the optimal setup plan is transformed into a graph search problem. A setup planning algorithm for rotational parts was then developed. Based on the previous survey the objective of The present study is overcome the shortcomings of existing CAPP systems. parts are described in terms of machining features which consists of geometric and non-geometric information linked to design and manufacturing.

SYSTEM FEATURES

In the current work, a computer aided interactive process planning (CAIPP) system is designed for turning. Based upon analyzing the characteristics of the reviewed CAPP systems as well as the approaches used in CAPP and its implementation techniques. It is concluded that the proposed system should have the following features:

- 1- The system is to be based upon the generative approach to achieve high automation.
- 2- The part design data input will be interactive to achieve high flexibility of the input operation.
- 3- The implementation technique should be of the top-down type. The top-down technique, contrary to the bottom-up technique, develops the process planning by means of tracing the task of process planning from top to bottom. This is an automated process planning oriented towards generative approach. In this technique, the system works in the sequence determination of overall strategy, analysis of detailed tactics, analysis of the production process for each individual component, ..etc. Hence, it is compatible with the generative approach.
- 4- The programming language of the system is to be VISUAL BASIC for Windows which is an event-driven language [17,18]. Program instructions are executed only when a particular event calls that section of code into action. VISUAL BASIC automatically executes a subprocedure when an application event occurs. Also, Windows provide a proper environment of interactive programming (simultaneous multitasks, graphics and transforming dataincluding scanned images, spread sheets, and text from one window to another).

CAIPP SYSTEM DESIGN

The generative approach to process planning implemented in the developed system of the current work utilizes an automatic computerized system consisting decision logic, formulae, technology algorithms, and geometry based data to uniquely determine the many processing decisions for converting a part from a rough a finished state. The process planning system essentially consists of two major components. The first component is the segment. The part part recognition recognition segment defines all geometric features and features sizes for all process related surfaces. The second component of the process planning system is the software, comprised of decision logic, formulae, and technological algorithms, to compare the part geometry requirements to characteristics and capabilities of available manufacturing facilities. This involves determining the appropriate processing operations, selecting the machine tool, determining the cutting plan or other operations details, and calculating the machining time and power needs for each operation. CAIPP system has been designed follow the following sequence: 1) Determination of the blank size, 2) Recognition of the part, 3) Determination of the operation sequence, 4) Selection of the cutting tool, 5) Calculation of the cutting parameters, 6) Selection of the machine tool. Also, because CAIPP system is generative, the built-in decision logic contains the general rules of the manufacturing operations. They can operate on a brief input data describing the geometric features and their related dimensions. The top-down technique utilizing this decision logic is used. Figure 1 depicts CAIPP main menu window. The following sections present CAIPP approach to determination of all needed information and decisions for producing process plans.

List Print View Tool Mar	chine CAPPS Calculations Configuration Help Exit
Sheet Heading	Work Material
Sheet Name	C Carbon Steel C Low Alloy Steel C Stainless Steel
Part Name	C Gray E.L. C Mallerable E.L. C Nodular E.L.
Part Number	CAL Alloys CEu Alloys CMg. Alloys
Batch Size	Blank Material
Designer	C Casting C Holling
Planner	C Disop Forging C Die Forging
Date	Material Hardness
Work Size	BHN of Work Material
Largest Diameter [mm]	
Final Length [mm]	Main Shape
	C External Shape C Internal Shape
Blank Size	

Figure 1 Main menu of CAIPP system.

DETERMINATION OF BLANK SIZE

The proper blank size for parts to be machined by turning is determined by the blank length L_b and blank diameter D_b . The blank diameter is considered to be of cylindrical shape, and it is assumed that the blank is for producing one piece only. Thus the parting off operation is not considered. Thus; the blank size is expressed as

 $L_b = L_f + 2a \tag{1}$

 $D_b = a + d_L \tag{2}$

 $a=a_d+a_e+a_t+a_{op}$ (3)

Where, a: total allowance (mm)

ad: thickness of defective layer (mm).

ae: error of geometric form (mm).

at: tolerance of the blank (mm).

a_{op}: allowances of the next operation (mm).

L_f: final part length (mm).

d1: largest machined diameter (mm).

The recommended values for the allowances of different blank material sources [19] are considered for CAIPP system. Although the calculated blank diameter is not a standard diameter, standard diameter should be used. This can be done by selecting the diameter just greater than or equal to the calculated blank diameter according to the standards.

RECOGNITION OF THE PART

The part recognition in CAIPP system considers the parts as objects composed of various types of adjoining shapes having a given dimensional size. Table 1 shows cylindrical type shapes and a scheme for defining the parts in terms of five external shapes and ten internal shapes. A shape modifier is a feature that may be found on a cylindrical surface. Table 2 presents twenty two features universally

found on internal or external surfaces of

cylindrical type shape.

The CAIPP considers machining of the shapes and features on the left side of the part first, and then followed by machining on the right side of the part.

DETERMINATION OF OPERATION SEQUENCE

In industry, much of the lathe work is held in a chuck. It is important to follow the correct machining sequence of operations in order to prevent spoiling work, which so often happens when incorrect procedures are followed [20]. The general machining scheme applied in CAIPP is to perform machining operations on the external features, followed by drilling operations to remove the bulk internal stock, and finally machining operations on the internal features [21]. Turning, facing, grooving, chamfering, drilling, boring, and threading are the basic operations that have been implemented in CAIPP system. They are further divided into external and internal operations, involving two types of machining (rough cut and finish cut). Also, CAIPP is capable of selecting multiple passes and processes for the desired machined surfaces.

The guidelines considered for selection of sequence of operations in CAIPP system are: 1) apply roughing operation to the external profile by facing and turning operations, 2) apply finishing operation to the external profile, 3) perform external grooving operations, 4) produce the external threads, 5) perform chamfering operations on the external surfaces, 6) prepare for the internal profile, if any, by removing as much internal stock as possible by a drilling operation, 7) apply rough boring to internal profile, 8) apply finishing operation to the internal profile, 9) perform internal grooving operations, 10) produce the threads, and 11) perform internal chamfering operations on the internal surfaces. Moreover, CAIPP system applies the top-down and decision logic to select the processes and their sequence and parameters. The decision logic is divided into a condition and an action. Fourteen decision logic blocks have been built in CAIPP system for the relevant machining operations. These decision logic blocks are used for determining final diameter, machined length, maximum depth to be cut and tool label for all operations.

Table 1 Cylindrical type shapes

Table 1 Cylindrical type shapes (Cont)

through hole internal steps at right end
through hole internal steps at left and right ends
blind hole no internal steps at left end
blind hole no internal steps at right end
blind hole no internal steps at left and right ends
blind hole internal steps at left end
blind hole internal steps at right end
blind hole internal steps at left and right ends

SELECTION OF CUTTING TOOL

The CAIPP system is planned for high speed steel and carbide cutting tools. Work materials considered are carbon steel, low alloy steel, stainless steel, maleable cast iron, nodular cast iron, gray cast iron,

alloys, copper alloys, and aluminum magnesium alloys. The selection of the cutting tool material is determined by the planner through the cutting tool window. In case of a null selection is detected, the high speed steel tool will be used as the default cutting tool. During the selection and sequencing of the machining process, an appropriate cutting tool label is assigned for each machining process depending upon the shape to be machined. According to the primary tool label and tool material, a tool code will be selected. For drilling operations. standard twist drills selected.

CUTTING PARAMETERS AND MACHINING CONDITIONS

The machining parameters in turning are cutting speed, feed rate and depth of cut. The setting of these parameters determines the surface finish, metal removal rate, production time and needed. The CAIPP system uses a data retrieval method for determining cutting speed, feed rate and depth of cut. The concept of establishing machining data retrieval is to use a computer to look up table values for cutting conditions. Machining data for different combinations of materials, tools and operations are ordered in a computer. These data are compiled through different metals machining textbooks [20,22-24]. Tables 3 and 4 present a sample of machining data for rough and finishing cuts with carbide tools considered materials. The for the equations presented by these tables are developed through the current work by using least-squares fitting for mid-point value of each range. The values of R (which measure the goodness of fit) for all fitted equations are very much acceptable where the minimum value is 0.90. Similar tables were developed for other operations and tools.

Table 2 Shape modifier.

THE SAME TO PERSONAL PROPERTY.	Definition .		
	external taper		internal taper
	external thread		internal thread
	external square groove		internal square groove
	external round groove		internal round groove
	external taper groove		internal taper groove
	external sharp groove		internal sharp groove
	external chamfer		internal chamfer
	external round corner		internal round corner
	external square shoulder		internal square shoulder
	external beveled shoulder	annillo annillo	internal beveled shoulder
	external fillet shoulder		internal fillet shoulder

PRODUCTION TIMES

Three times are considered in CAIPP system. These times are set-up times for batches, tool change time and part time. The set-up time occurs once per part. Tool change time tot, is the time to change a tool. The value of both set-up time and tool change are controlled from the limitation window of the configuration task in the CAIPP main menu window.

PART TIME

In the present CAIPP system, three elements of time are related to parts. These elements of time are machining time (t_m) , approach (t_t) time attributed to advance and withdraw the tool and non-productive time due to loading and unloading the part (t_u) . The approach time is dependent on the operation selected [8]. The total

production time can be expressed as the sum of $t_{ra} + t_t + t_u + t_{ct}$.

MACHINING POWER

The available power on any machine tool places a limit on the size of the cut that it can perform. The conditions in different workshops may vary and machine tools are not all designed alike, hence some variations between the estimated results and those obtained on the job are expected. However, by using the method provided in this section reasonable estimates of the power required can be made. The power required to perform a machining operation is given by [25]:

 $P_c = K_P CQW \tag{4}$

where Pc: power required (kW).

K_p: power constant.

C: feed factor for power constant.

Q: metal removal rate in cm^3/s .

W: tool wear factor.

The power of the motor, P_m is given by $P_m = P_c/E$ (5)

where E: machine tool efficiency factor.

Feed Factor for Power Constant

Feed factors for the power constant are calculated, by using least squares fitting technique and data obtained from [18], through the following equation developed in this work.

 $C = 0.785 * f^{-0.1975}$ (6) where f = feed rate (mm/rev)

Table 3 Cutting Conditions for rough turning with carbide tools

Material	BHN	Cutting speed m/min	Feed rate mm/r	Depth of cut mm	cutting speed fitted equation	R ²
Carbon and Low Alloy Steels	85 - 125 125 - 175 175 - 225 225 - 275 275 - 325 325 - 375 375 - 425	140 116 102 95 82 69 53	0.381	3.81	V=161.5-0.27*BHN	0.97
Stainless Steel	135 - 185 185 - 240 275 - 325 375 - 425	152 137 98 51	0.381	3.81	V= 224.2-0.43*BHN	0.99
Meallable Cast Iron	110 - 160 160 - 200 200 - 240 200 - 255 240 - 280	213 91 69 61 46	0.381	3.81	V=361.91-1.3 *BHN	0.90
Nodular Cast Iron	140 - 190 190 - 225 225 - 260 240 - 300 270 - 330	140 99 76 61 37	0.381	3.81	V=258.76-0.74*BHN	0.98
Gray Cast Iron	110 - 140 150 - 190 190 - 220 220 - 260 250 - 320	140 107 85 69 35	0.381	3.81	V=218.2-0.64*BHN	0.99
Al Alloys	-	335	0.381	3.81	-	-
CU Alloys	-	182	0.381	3.81	-	-
Mg Alloys	-	305	0.381	3.81	-	-

Computer Aided Interactive Process Planning For Turning (CAIPP)

Table 4 Cutting Conditions for finish turning with carbide tools

Material	BHN	Cutting speed m/min	Feed rate mm/r	Depth of cut mm	cutting speed fitted equation	R²
Carbon and	85 -125	165	0.177	0.635		
Low Alloy	125 - 175	137				
Steels	175 - 225	128				
bluste og 1	225 - 275	119			V=189.6-0.29 *BHN	0.97
	275 - 325	107				
	325 - 375	88	THE STATE OF THE S			
	375 - 425	69				
Stainless	135 - 185	170	0.177	0.635	V=247-0.46 *BHN	0.98
Steel	185 - 240	152				
	275 - 325	114	(東京)			
	375 - 425	60	11-2			
Meallable	110 - 160	274	0.177	0.635	V=442.7-1.5 *BHN	0.90
Cast	160-200	122				
Iron	200-240	99				
	200-255		100			
	240-280	76				
Nodular	140-190	175	0.177	0.635	V=318-0.9 *BHN	0.98
Cast Iron	190-225	122				
	225-260	91				
college to be be	240-300	76				
	270-330	49	Miller			
Gray Cast	110-140	175	0.177	0.635	V=276.4-0.81 *BHN	0.99
Iron	150-190	140				
	190-220	107				
	220-260	84	Mark .			
Al Alloys	-	365	0.177	0.635	-	
CU Alloys	-	228	0.177	0.635	-	-
Mg Alloys		450	0.177	0.635	-	-

Machine Tool Efficiency Factor

The machine tool transmits the power from the driving motor to the work piece using different power transmission systems. The machine tool efficiency factor for power depends on the transmission system. Average values of these factors are used as obtained from [25]. Also, average values for the tool wear factors are used.

Power Constant

The power constant Kp depends mainly on the hardness of the material to be cut. In this aspect, formulae for determining power constants are developed (R² from 0.97 to 0.99) for different materials based on the obtained values from [18]. Table 5 lists these equations for different materials.

SURFACE FINISH

In CAIPP system, the surface finish requirement for each defined shape should be given as an input. If the surface finish is ignored during data input, a recommended value for the nose radius and feed rate will be assigned. In case of a given surface finish, the CAIPP system will compute a proper nose radius or select the most standard size that the desired finish will be obtained. However, for single point tools, the arithmetic mean value of surface finish (Ra in µm) can expressed as a function of nose radius (r) and feed rate (f) [3].

$$R_a = 0.0321 f^2 / r$$
 (7)

WORK SUPPORTING METHOD

CAIPP system supports machining of parts in a 3-jaw chuck and or tail stock constrained by L/D ratio which is the ratio of the extended length to the diameter.

SELECTION OF THE MACHINE TOOL

The method of selection of machine tool in the CAIPP system depends on the two dimensions that indicate the diameter and length of the largest work piece that can be machined on a lathe. CAIPP system can support 90 different lathes. It is also capable of selecting the lathe that needs less power input to a given part within the size produce specification limits of the lathe. The machine tool data file format is an ASCII file. The format in this file is:

- · Machine tool data file name.
- · Machine tool number.
- Machine tool name.
- Available power.
- · Swing.
- · Span.
- Number of available spindle speeds.
- Available spindle speeds.
- · Number of available feeds.,
- · Available feeds.

EXAMPLES

Figure 2 and Figure 3 exhibit working drawings for the two examples presented in this work. Figure 2 is for a shaft of steel 1045 having a hardness of 210 BHN. Figure 3 is for a nipple of steel 1020 having a hardness of 250 BHN. Tables 6. and 7. present the operation sheets produced by CAIPP system for these examples.

CONCLUSIONS

Computer interactive process planning system for turning (CAIPP)offers substantial cost, speed and consistency advantages for operations sequence planning of turned parts. It can be implemented on a microcomputer and it greatly reduces the range of skills required for planning. The input of CAIPP system data should be learned without difficulty by shop floor personnel.

Also, the output is usable on the shop floor with little or no special training. The software is user friendly and written for interaction between the process planner/production and the engineer software computer. CAIPP will help planners process increasing their productivity. The sequence of information input through the designed 23 windows of CAIPP system is a flexible input order. process sheets The developed provide the necessary consistent and information for shop floor in few seconds.

Table 5 Power constant Kp

Material	BHN	Kp	Fitted equation	R ²
Carbon	80 - 100	1.72		
Steel	100 - 120	1.80		
	120 - 140	1.88		
	140 - 160	2.02	K _p =1.25+0.005*BHN	0.97
	160 - 180	2.13		
	180 - 200	2.24		
	200 - 220	2.32		
	220 - 240	2.43		
Alloy	140 - 160	1.69		
Steel	160 - 180	1.77		
Dicci	180 - 200	1.88		
	200 - 220	1.97	Kp=0.925+0.005*BHN	0.99
	220 - 240	2.07		
	240 - 260	2.18		
	260 - 280	2.29		
	280 - 300	2.38		
Stainless	150 - 175	1.64		
steel	175 - 200	1.97	K _p =0.0105*BHN	0.98
3000	200 - 250	2.4		
Cast	100 - 120	0.76		
Iron	120 - 140	0.96		
	140 - 160	1.04		
	160 - 180	1.42	K _p =0.0005*BHN1.567	0.97
	180 - 200	1.64		
	200 - 220	1.94		
	220 - 240	2.48		
A1	-	0.68	-	-
Alloys				
Cu	-	1.36	-	-
Alloys				
Mg Alloys	-	0.27	•	-

Figure 3 Working drawing of nipple no. 008.94.

ABOU-ZEID, SHOUMAN and AMAITIK

Table 6 Operation Sheet for shaft no. 00294

				PROCES	S SHEET						
SHEET NAME PART NAME BATCH SIZE BLANK SIZE BHN		:SHEET2 :SHAFT :1 :110x218 mm :210			PAF MA	MATERIAL PART NO. MACHINE BLANK		:STEEL 1045 :002.94 :MASTER 2500/N0.4 :ROLLED			
NO.	OPERATION	LENGTH m m	DIAMETER m m	PASSES	DEPTH m m	FEED mm /r	SPEED rpm	TIME	POWER KW	TOOI	
1	Face	55	110	2	2.000	0.32	72	4.86	0.511	16	
2	R. Turn	115	100.8	2	2.300	0.32	72	10.60	0.588	1	
3	R. Turn	93	76.8	4	3.000	0.32	98	12.56	1.534	2	
4	R. Turn	68	60.8	4	2.000	0.32	130	6.94	1.023	1	
5	F. Turn	22	100	1	0.400	0.16	98	1.57	0.023	1	
6	F. Turn	25	76	1	0.400	0.16	130	1.33	0.023	2	
7	F. Turn	68	60	1	0.400	0.16	130	3.45	0.023	1	
8	Groove	2	60	1	1.000	0.25	54	0.30	0.035	6	
9	Chamfer	2	60	1	2.000	0.25	54	0.30	0.071	9	
10	Drill	44	21.5	1	n/a	0.40	320	0.36	n/a	13	
11	R. Bore	19	34.2	5	1.270	0.20	175	2.89	0.322	17	
12	R. Bore	10	24.2	1	1.350	0.20	235	0.28	0.069	17	
13	Taper	19	40 7.5	1	2.900	0.32	235	0.29	0.371	33	
14	F. Bore	10	25	i	0.250	0.08	235	0.70	0.005	17	
15	F. Bore	15	22	i	0.250	0.08	235	0.70	0.005	17	
16	Rechuck	-	-	1	0.200	0.00	-	1.00	0.003	0	
17	Face	55	110	2	2.000	0.32	72	4.86	0.511	16	
18	R. Turn	95	80.8	4	3.650	0.32	98	12.83	1.866	1	
19	R. Turn	75	50.8	4	3.750	0.32	175	5.68	1.918	1	
20	R. Turn	55	45.8	1	2.500	0.32	175	1.07	0.320	2	
21	R. Turn	38	40.8	1	2.500	0.32	235	0.56	0.320	1	
22	Taper	20	68 16.7	2	3.200	0.32	130	1.06	The second second	32	
23	F. Turn	20	50	1	0.400	0.16	175	0.80	0.818	1	
24	F. Turn	17	45	1	0.400	0.16	175	100000000000000000000000000000000000000			
25	F. Turn	38	40	1	0.400	0.16	235	0.69	0.023	2	
26	Groove	2	40	1	The state of the s			1.09	0.023	1	
27	Thread	36	40	5	2.000	0.25	72	0.23	0.071	5	
28	Chamfer		7.00		0.520	3.00	72	1.26	1.102	13	
29	Drill	61	40	1	2.000	0.25	72	0.23	0.071	9	
30			15.75	1	n/a	0.40	425	0.37	n/a	0	
	F. Bore	61	16	1	0.120	0.08	425	1.91	0.002	17	
31	Groove	2	20	1	2.000	0.25	130	0.13	0.071	21	
32	Thread	34	16	2	0.870	2.00	175	0.26	0.492	29	
33	Chamfer	2	16	1	2.000	0.25	175	0.09	0.071	25	
FIRS SECC	CLAMPING :cla	imped diame clamped diai	ter =110mm an	d extended l	ength = 12 ed length =	4 mm					
	machining time				.18 mim						
	approach time				36 mim						
	tool changing tin	me		mim							
	productive time	iic .		mim							
	time				mim						
iotal	production time			= 15	2.53 mim						

ALL OPERATIONS ARE SUPPORTED IN 3-JAW CHUCK

Computer Aided Interactive Process Planning For Turning (CAIPP)

Table 7 Operation sheet for nipple no. 008.94

011111	202 21 6 3 6 12		OTTEDW 7	PROCES	SSHEET	WENT AT		OWN	1 1000	
SHEET NAME PART NAME BATCH SIZE BLANK SIZE BHN			SHEET 7 NIPPLE 1 40 x 62 mm 250	MATERIAL PART NO. MACHINE BLANK				:STEEL 1020 :008.94 :Harrison M 300/No.1 :ROLLED		
NO.	OPERATION	LENGTH	DIAMETER	PASSES	DEPTH	FEED	SPEED	TIME	POWER	TOOL
		m m	mm		m m	mm /r	rpm	mim	KW	
1	Face	20	40	2	2.000	0.36	125	1.12	0.420	16
2	R. Turn	35	27.8	2	2.050	0.30	180	1.40	0.641	2
3	R. Turn	12	22.8	1	2.500	0.30	260	0.19	0.263	1
4	F. Turn	23	27	1	0.400	0.16	180	0.89	0.019	2
5	F. Turn	12	22	1	0.400	0.16	260	0.34	0.019	1
6	Groove	3	22	1	2.000	0.25	85	0.24	0.057	5
7	Thread	8	22	5	0.260	1.50	85	0.41	0.222	13
8	Chamfer	2	22	1	2.000	0.25	85	0.19	0.057	9
9	Drill	58	9.8	1	n/a	0.40	540	0.28	n/a	0
10	R. Bore	8	14.2	1	2.200	0.20	260	0.22	0.090	17
11	Taper	8	17 7.5	1	1.400	0.30	370	0.09	0.147	33
12	F. Bore	32	10	1	0.100	0.08	370	1.20	0.002	17
13	Rechuck	-		-	-	-	-	1.00	-	-
14	Face	20	40	2	2.000	0.30	125	1.12	0.420	16
15	R. turn	19	36.8	1	1.600	0.30	180	0.41	0.168	1
16	R. Turn	19	36	1	0.400	0.16	180	0.75	0.019	1
17	R. Bore	14	25.2	2	2.300	0.20	125	1.28	0.188	17
18	F. Bore	14	26.5	1	.250	0.08	125	1.72	0.004	17
19	Grove	3	29.5	1	1.500	0.25	58	0.35	0.043	22
			neter = 40 mm a				1			
SCHOOL SECTION 10	Market Contract on Manageria Print of Street Contract Street	THE PARTY OF THE P	diameter =27 mn			= 28 mm				
Total machining time				= 11.85 mim						
Total approach time				= 1.34 mim						
Total tool changing time					1 mim					
	productive time				mim					
- nepreprint control	p time) mim					
Total	production tim	е		= 63	1.19 mim					

ALL OPERATIONS ARE SUPPORTED IN 3-JAW CHUCK

REFERENCES

- L. Alting, H. Zhang, "Computer Aided Process Planning: the State-of-the art Survey", Int. J. Prod. Res., Vol. 27, No. 4, pp 553-585, (1989)
- C.H. Link, "CAPP, CAM-I Automated Process Planning System", Proceedings of NC Conference, CAM-I, Ico., Arlington, Texas, (1976)
- 3. R.A. Wysk, "An Automated Process Planning and Selection Program: APPAS", Ph. D. Thesis, Purdue University, West Lafayette, (1977).
- 4. W. Eversheim, B, Holz, "Computer Aided Programming of NC-Machine Tools by Using System AUTAP-NC", Annals of the CIRP, Vol. 31, No. 1. (1982)
- 5 J.C. Cheng, R.A. Wysk, An Introduction to Automated Process Planning

- Systems, Prentic-Hall, Inc., Englewood Cliffs, New Jersy, (1985)
- I Cser, M. Juhasz, K. Szabo, I.L Horvath L. Tolani, "Computer-Aided Planning of Machining Processes", in Advances in CAD/CAM, North-Holland Publishing Company, Amsterdam, pp 250-260, (1983)
- S. Joshi, "Expert Process Planning System with Solid Model Interface", Int. J. Prod. Res., Vol. 26, No. 5, pp. 863-885, (1988)
- 8. H.P. Wang, R.A. Wysk, "A Knowledge-Based Computer Aided Process Planning System", 19th CIRP International Seminar on Manufacturing Systems, Penn. State. (1987)
- 9. K. Iwata, Y. Fukuda, "Representation of Know-How and its Application of

ABOU-ZEID, SHOUMAN and AMAITIK

- Machining Reference Surface in Computer Aided Process Planning", Annals of the CIRP, Vol. 35, No. 1, (1986)
- 10.J. Xingling, C. Jianguo, "CCAPP A
 Comprehensive CAPP System Under
 the CIM Circumstances", First
 International. Conference on
 Manufacturing Technology, The Hong
 Kong Institution of Engineers, Hong
 Kong, p 327-331, (1991)
- 11.J. Mei, H.C. Zhang, W.J.B. Olham, " Neural Network Approach for Datum Selection in Computer-Aided Process Planning", Computers in Industry, Vol. 27, No. 1, pp. 53-64, (1995)
- 12. Z. Zhao, "Process Planning with Multi-Level Fuzzy Decision-Making", CIMS, Vol. 8, No. 4, pp. 245-254, (1995)
- 13. Y. Shimizu, K. Nishiyachi, " Development of Computer Aided Process Planning (CAPP) for Assembly", Proceedings of the Japan/USA Symposium on Flexible Automation, Vol. 2, pp. 811-814, (1996)
- 14. M.C. Kayacan, I.H. Filiz, Sonmez, A.I.;Baykasoglu, A.; Dereli, T., " An Optimized Process Planning System for Rotational parts", Computers in Industry, Vol. 31, No. 2, pp. 181-195, (1996)
- 15. M. Gulesin, "Intermediate Part Modeling in a Process Planning and Fixturing System", Robotics and Computer-Integrated Manufacturing, Vol. 12, No. 4, pp. 321-328, (1996)
- 16. S.H. Huang, H.C. Zhang, Oldham, W.J.B., "Tolerance Analysis for Setup Planning: A Graph Theoretical

- Approach", Int. J. Prod. Res., Vol. 35, No. 4, pp. 1107-1124, (1997)
- 17. P. Fledman, "Using Visual Basic 3", Vol. I, QUE, Corporation, New York. (1993)
- 18. P. Fledman, "Using Visual Basic 3", Vol. II, QUE, Corporation, New York (1993)
- 19. A. Tantawy, Machine Tools, Helwan University Press, Cairo. (1981)
- 20. S.F. Krar, J.E. Ahmed, ST.; Oswald, J.W. Machine Tool Operations, McGraw-Hill International Book Company, Tokyo. (1983)
- 21. S.H Yeo, Y.S. Wong, M. Rahman, "Integrated Knowledge-Based Machining System for Rotational Parts", Int. J. Prod. Res., Vol. 29, No. 7, p 1325-1337, (1991).
- 22. G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, McGraw-Hill Book Company, N.Y., New York. (1975)
- 23. L.E.C. Doyle, Manufacturing Processes and Materials for Engineers, 3rd edition, Prentice Hall, Inc., Englewood Cliffs, New Jersey, (1985)
- 24. L. Taylor, Metals Handbook, ASM, Vol. 3, Machining, 8th edition, Ohio. (1976)
- 25. E. Oberg, F.D. Jones, H.L. Horton, Machinery Handbook, 22nd edition, Industrial Press Inc., New York (1985)

Received October 8,1997 Accepted February 17,1998

معاونة الحاسوب التفاعلية لتخطيط عمليات الخراطة

محمد رأفت أبو زيد* ، محمد عباس شومان ** ، صالح مأتيق *
* قسم الهندسة الصناعية جامعة قار يونس
** قسم هندسة القوى الميكانيكية - جامعة الزقازيق

ملخص البحث

إن استخدام الحاسوب لتخطيط العمليات يعتبر من الأدوار الهامة الفاعلة في عمليات التصنيع المتكاملة بإستخدام الحاسوب. يقدم هذا البحث أسلوبا تخليقيا متفاعلا لتحديد تتابع عمليات التخطيط للأجزاء المصنعة على المخرطية. وقد تم تصميم وتخليق هذا النظام بإستخدام Microsoft Visual Basic 3 Under windows. ومن فوائد النظيام مقدرتة على تحديد صفحات التخطيط بكل ما تحتاجة من معلومات وبيانات وذلك لعدد كبير جدا من المشغولات الصناعيسة والمستى تم الحصول عليها من الصناعة بالفعل بالاضافة إلى سهولة استخدامة والتدريب علية وأمكانية تطبيقة على الحواسب الصغيرة. كما انه يقلل من المهارات اللازمة والتي تستخدم في عمليات التخطيط. في هذا النظام تم إستحداث العديد من النمائج الرياضية لتحديد سرعات القطع وكذا القدرة لكل من الماكينة المستخدمة وعملية القطع . في نهاية البحث تم ذكر النتائج والتوصيات التي المحصول عليها وكذلك مدى امكانية تطوير النظام المقترح مع ذكر بعض الاتجاهات المستقبلية في هذا المجال.