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ABSTRACT

A method is derived for computing the approximate solution of
Fredholm Integral Equation of the first kind whose kernel has
Logarithmic singularities and the density function is also singular in
a neighborhood of the integration limits. Computational results
proofs the powerful of the presented method.
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INTRODUCTION

It is known that the method of integral

equations has been successfully applied
to boundary value problems [1]. This
reduces the solution of a boundary problem
to the solution of an equivalent integral
equation. For a wide class of boundary
problems, which  arise in the potential
theory and electronoptics problems, the
equivalent integral equation is said to be
singular due to the kernel singularities. In
fact, for an open-boundary the unknown
function of the equivalent integral equation
is also singular near and at the endpoints of
the boundary [2]. Many approaches have
been developed for such Integral Equation
[3-8]. Most of these methods are based on
the approximation of the three functions:
the unknown function, the kernel, and the
data function, which increases the roundoff
errors and suffers the drawback that the
computer programming is tiresome and time
consuming. In the present paper we give a
method for solving the one-dimensional
Fredholm Integral Equation with
logarithmic singulariti. s in the kernel [9-
10], and whose unknown function is also
singular. The given technique based on the
approximation of the wunknown function
only. In this way, we consider the unknown
function as a product of two functions, one
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of them is singular in the neighborhood of
the integration limits in such a manner that
this singularities can be isolated by
changing the variables, while the other is
expanded in a Taylor polynomial with
unknown coefficients. The singularities of
the kernel are treated by adding and
subtracting an asymptote quantity to the
integrand function.

APPROXIMATE METHOD
Consider the Integral Equation

b

[ulmt,) a=vit,) sast <b (1)

where

the kernel is R(t,t,) = ln( ) such that
d(t,t,)

d(t,t,) is given by

d(t,tg) = (x(D-x(1))’ +(yO)-y(t,))’ »

U(t) is the unknown function , and V(to) is
the data given function. Put U (t) in the form
U(t) =(t) p(t) ()
The function 7(t), is imposed here to treat
the singularities of U(t), at the endpoints of
the domain of integration .

Let
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e D vl (3)

(t-a)*(b-1)°
The function p(t) is approximated as follows
p()=CY(t) (4)
where
C=[co c1 c2....cn
is an (1 x n) unknown Taylor's coefficients
matrix, and

Z[Y(r(‘) }’1(0 YZ(') )’n(t)]
such that
vi()=(t-a) ; i=0n
Now, Substituting (3) and (4) into (2) results
in

U@) = C Y(t) (5)
where

Y'()=[5(t) %i() %) . Fa(0)]

such that .

7. (t =_.._(_t___g)l_. ; izﬁ

(t-a)*(b-1)?

It is desirable to choose the number o
(base point) very close to some t for which
the functional value f{t) is approximated.
Again we substitute Equation 5 into
Equation 1 to get the matrix equation
Cy(t,to) =V(to) (6)
where
PI(tt)=[wo(tt) wi(tt) wa(t) . wa(L1)]

such that
(t-a)' g 1

b
wi(tt,)= —-In dt
( I(l a)i(b-1):  d(tto)
Now, if the matrix Equation (6) could be
satisfied at the n-points t’ s j=0,n,

ax< t{) <b then we get the algebraic linear
system

K(t})cT = V(i) (7)
where

V(t{,) is a (nx1) data matrix ,CT is the
unknown coefficients matrix given in (4),
and K(tf,) is a (n x n) matrix whose

entries k J,(tg) are given by

b : i
kith)= Riangy |, L0
(¢ i(t—a)%(b-t)i- ey
j=0n ,and i=0,n (8)

CALCULATIONS OF IMPROPER
INTEGRALS

The integrals given by Equation 8 are said to
be improper integrals because of the

singularity of tRIENEE N |
(t-a)(b-1)*

the endpoints of the limits of integration and

because of the singularity of the logarithmic

function when t — t!.

Firstly, the singularities of the unknown
function are isolated. Rewrite the integrals
given by Equation 8 in the form

a+b
= k]ji(tg)-i-kzjl(té) :

2

kji(t{,)= I + jb

where
a+b

LH i
k_,.(tl) i (t-a) Tl (lj)d:= fo(t)m(t,qi,)dt

(t= a)%(b—t)z di 6t

and

ik J {t= "').
H t) .'L,(t a) (b- t)2

d(t tJ)dt fo(t)m tth ot

a+b
where

1 (t- )’
%) (t-a)i(b~1)z

Now, in k'j,(tf,) put (t-a)=p° and in
kzj.(tf,) put (b—t) =y?, such that t} —a=([3’0)2

and b-t) =(y§,)2 . Then we get

=
Ki(B2) = I ®, ()%, (B. B3 )ap ©)

and
JE'
K%i(v3)= f%(v %R, (v.vd )y

where
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(Dl(ﬁ) 1’ (;3 +a " (y +a

m.ﬂa’) “{T,w}
ﬁz(Y~Yi)=ln[,& ylyj)]
VARERE)

such that

3,66 =[x - %@L +(5®)-56L)

and

801 = (& - %)) + (5 -7
Thus, the singularity of the unknown

function has been isolated , and remains
only the singularities of the kernel which

appears in the functions
%,(p.8y) and  Ry(r.vd)
when

(%(8), 3(8) - (%(B2), 5(83)) and
(%), 5(1) - (%rd), $12))

Now, we put d,(3,)) and dy(y,y}) in
the following forms [5]

0= (0 wn) (G0 ) -]

=n[B- B] (10)
R (e R T R R

= hafy -7 | (11) ‘.
where il T 1| .
M= ‘/((i(ﬁ))'a=aa)2 +((37(13))}»-4@'{,)2 1 |

and

Ay = J((X(Y )),‘y=-'£)2 +((?(y));7;7£)3
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[(A)=p+ }Lln(xl_-)— Bl n(B)) — (1~ B2)in{k - B}) ;

v b—a'
"" - 2

and
1(02) =k + winf5) - v2 Infyd) = (- v3 ) n{ - v2):

— [b-a
h=y

Therefore, if B — Bi then the
integrals K ji(ﬁi ) are computed using
formula (14), and if y-—>y), thenthe
integrals Ezji(yﬂ,) are computed using
formula (15), in other cases the integrals
Elﬁ(ﬁi) and i‘('zji(Y‘(',i’ are computed using
formula (9).

Thus, the matrix K(tg) is now transformed

~

to the matrix K whose entries k

by

ji -are given

iZJ, =E]Ji(ﬁg)+ﬁzji(yé) ;

So, we obtain the following linear system of
Equations
KT =v(ti) (16)

The solution of system (16) gives the
unknown coefficient C7, and by virtue of (2),
(3), and (4) we can get the solution of
Integral Equation 1.

COMPUTATIONAL RESULTS
The computation are made on a personal
computer IBM 486-DX by wusing the
Microsoft PC-MATLAB version 3.2-PC , June
8, 1987.
Consider the Integral Equation

1
jf(z)hﬁﬂt:l . 1<t <1
-1

whose exact solution [11] is given by

1 .

f(x) o l<x<l

In this example we take a=0. From Table
1 it is observed that the obtained solutions
for n=1 and n=2 converge and in avery
good agreement with the exact solutions
[11]. In addition, given any positive constant
8 > O there exist N(9)
such that
IT, -E], <8 for n=N(3)

Furthermore, the solutions dependent
on the choosing of the collocation points. If
the degree of the Taylor polynomial is even
and the collocation points are chosen closely
to oo , then a good results are obtained for
xel where Iis a small interval containing o.
If the degree of the Taylor polynomial is odd
and the collocation points
are chosen not closely to a , then a good
results are obtained for x g/ where [ isa
small interval containing .

In Table 2 the solutions obtained by the
presented method for n=1 are compared
with the exact solutions and the solutions
obtained by other methods [5,8] .

CONCLUSION

A method for the solution of Singular
Integral Equations has been presented. The
given method approximates the unknown
function only using Taylor series and treats
the singularities of both the kernels and the
unknown functions. The method simplifies
the computations of a Singular integral
Equation to the successive solution of a
linear algebraic system of equations. The
new proposed approach needs a small
number of Taylor series to provide an
excellent result. Therefore computational
complexity can be considerably reduced and
much computational time can be saved.
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Table 1 Study of the convergence of the given method
i Xi Ei(xi) Ti(xi) Ta(xi) Ts(xi) Ta(x1) Ts(xi)
0 -0.9000 1.0335 10536 1.6720 1.1487 1.14095 1.0879
1 -0.8000 0.7654 0.7654 1.1186 0.8139 1.0892 0.7879
2 -0.7000 0.6430 0.6431 0.8686 0.6686 0.9158 0.6546
3 -0.6000 0.5740 0.5741 0.7203 0.5850 0.7859 0.5748
4 -0.5000 0.5303 0.5303 0.6223 0.5312 0.6797 0.5210
5 -0.4000 0.5011 0.5011 0.5548 0.4948 0.5925 0.4830
6 -0.3000 0.4814 0.4814 0.5081 0.4701 0.5238 0.4561
7 -0.2000 0.4687 0.4687 0.4774 0.4540 0.4540 0.4380
8 -0.1000 0.4615 0.4616 0.4599 0.4449 0.4449 0.4275
9 -0.0000 0.4592 0.4593 0.4542 0.4419 0.4338 0.4241
10 0.1000 0.4615 0.4616 0.4599 0.449 0.4439 0.4275
11 0.2000 0.4687 0.4687 0.4774 0.4540 0.4741 0.4380
12 0.3000 0.4814 0.4814 0.5081 0.4701 0.5238 0.4561
13 0.4000 0.5011 0.5011 0.5548 0.4948 0.5925 0.4830
14 0.5000 0.5303 0.5303 0.6223 0.5312 0.6797 0.5210
15 0.6000 0.5740 0.5741 0.7203 0.5850 0.7859 0.5748
16 0.7000 0.6430 0.6431 0.8686 0.6686 0.9158 0.6546
17 0.8000 0.7654 0.7654 1.1186 0.8139 1.0892 0.7879
18 0.9000 1.0535 1.0536 1.6720 1.1487 1.4095 1.0879
Table 2 Comparison of the presented method with other methods
i Xi Ex Ppproximate solution | Numerical solution using |Approximate solution using
using Taylor Shape functions Orthogonal Functions
Polynomials
Ti(xi)

0 |0.0000 |0.4592 0.4593 0.4646 0.4593

1 |0.1000 |©:4615 0.4616 0.4648 0.4624

2 lo.2000 |0-4687 0.4687 0.4703 0.4731

3 [0.3000 |0-4814 0.4814 0.4758 0.4920

4 lo.4000 |©:5011 0.5011 0.4851 0.5257

5 |o.5000 |9:5303 0.5011 0.4902 0.5792

6 |0.6000 |9-5740 0.5741 0.5445 0.6924

7 |o.7000 |0:6430 0.6431 0.5668 0.8920

8 |0.8000 |0:7654 0.7654 1.1834 2.8965
9 |0.9000 | 1:0535 1.0536 1.4173 3.5678
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