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ABSTRACT

In this paper the Quadrature Methods are adapted to use on
graded nodes. The equal spaced nodes can be considered as a
special case from the graded nodes. The value of error when using
Quadrature Method on graded nodes is reduced compared with the
case of equal spaced nodes (uniform nodes technique). The best
value of exponent B is computed and is fitted in a curves for some
elementary functions which are putin a general form. It is found
that this value of B depends on the sup. and the local of the large
variation of the integrated function. In general the Quadrature
method gives a good results when using it in graded nodes
compared with equal spaced nodes especially when it is used for
singular integral.
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INTRODUCTION
quadrature rule is generic name given
to any numerical method for evaluating
an approximation to a definite integral If of
a function f(x) [1].

If = [ f(x)dx (1)

A method can in principle use any
available information about the function f(x):
values of derivatives at one or more points,
or values of simpler integrals. Here we
consider only the case when the information
used is restricted to the values of f(x) at a set
of points ( xi, k = 0,1,...., n), and the
approximation quadrature Q,, has the form:

Q,.f =D wf(xy)= If -Ef (2)

k=0

where Ef is the error, the values (xk, Wi, k=
0, 1,..., n) are calledt e quadrature nodes
and the quadrature weights respectively.
The values of the nodes and the weights are
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different from a method to another. The
nodes can be put on the interval of
integration by one from the two ways:
a) Uniform  nodes or equally spaced
nodes (f= 1)
b) Graded nodes where § # 1.

In general the first case can be considered
as a special case of the second when
B=1

Attia and Nersessian [2] used
product method to solve Volterra integral
equation of the second kind on graded
nodes; but their technique is based on
change the quadrature formulae.

For many problems it is not
important to use uniform nodes (equally
spaced), but it is inappropriate when
integrating a function on an interval that
contains both regions with large functional
variation and regions with small functional
variation. If the approximation error is to be
uniformly distributed, a smaller step size is
needed for the large variation regions than
for those with less variation. An efficient
technique for this type of problem is one
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that can distinguish the amount of
functional variation and adapt the step size
to the varying requirements of the problem.
Such methods are appropriately named
Adaptive Quadrature Method. The adaptive
technique based on the composite
Simpson’s rule is discussed by Burden and
Faires [3]. The technique is easily modified
to the other composite procedures.

A numerical algorithm for the
construction of generalized Gaussian
quadrature rules is presented by Ma et al.
[4]. The constructed quadrature rules
possess most of the properties of the
classical Gaussian integration formulae.
Tables of nodes and weight are given until n
= 20. The algorithm is applicable for higher
degree polynomial and singular integrals.

Much research has been done and many
numerical techniques have been proposed
to handle the singular integral. Huang and
Curse [5] presented a good review of the
numerical techniques which are used
currently to calculate the singular integrals
and nearly singular integrals in the
boundary element analysis. They discussed
some incorrect algorithms published before
and ‘ developed a numerical technique to
calculate the nearly singular integral.

MATHEMATICAL PRELIMINARIES

The Quadrature rule Q, Wwith
equally spaced nodes on a fixed interval
[a,b], yield a sequence of approximations
Q,f to If which, however, has generally
unsatisfactory convergence properties: the
erTor lan -If ' may not converge smoothly
to zero, even for apparently quite well
behaved function f{x). If we compare the

two rules
k
Qn(o’l):{xk = _;Wk} ’ (3)
n
Q,(aa+ nh):{xk —a+ kh;\irk} , 4)
then
& S (5)

We can therefore take Q, (0,1) as the
canonical rule. If M-Panel are used to
compute the value of definite integral (1),
the error Ef will tends to zero as M tends to
infinity [1].

Definition (1) The degree of accuracy, or
precision, of a quadrature formula is the
positive integer n such that E(Pk) = O for all
polynomials P of degree less than or equal
to n, but for which E(P,,q) # O for some
polynomial of degree (n+1).

The quadrature method based on the
interpolation polynomials, a set of distinct
nodes are selected {xo, Xq 0o xn} from the
interval of integration [0,1]. If P, s
Lagrange interpolating polynomial

x) = ) f(xy )Ly (%) 6)
k=0

we integrate P_ and its truncation error
term over [0,1] to obtain

J‘f(x)dx IZﬂxkhx)d( ﬂ_[x %) )( )X))

0 k=0

= Zf(xk)“’k "’

J.Hx xk){"“ C(x) (7)

okO

where ((x) is in [0,1] for each x and

1
W =[L(x)dx, foreachk=0,1,.,n (8
0

The quadrature formula Q, with error Ef
are given by:

o= Zwkf(xk) (9)

k=0

n

1
e 1 n+l)
B = 1)'£k x - % FO(e )dx. (10)

=0
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Definitionf2) The quadrature formula is
called closed or open according the nodes at
the ends are used or are not used to
compute the value of definite integral [6].

In this paper the effect of the nodes on

the approximation error of definite integral
is studied when using a quadrature
formulae. The graded nodes are suggested
and the quadrature formulae are adapted to
use on it. The quadrature formulae are from
the closed and the open type. The value of
B is computed and is fitted for a number of
different functions.

ADAPTATION OF QUADRATURE
FORMULAE FOR GRADED NODES
In this section we adapt three
quadrature formulae to use on graded
nodes; the first two are from the closed type
which are Simpson’s and Boole’s rule and
the third from the open type which is
Gauss-Legendre rule.

Simpson’s Rule on Graded nodes
The interval [0,1] is subdivided into N =
2M subintervals, where

k%] (k7P
*x =N T|Ml’

k=0,1,.. M (11-a)
Xopaat Xis o) (k+l)'3 (kJa
Kokt = — S S i e S |
2 2 M M
k=0,1, .., M-1, (11-b)
a5 - (e
72|\ M M |
k=0,1,...., M-1 (11-c)

If f € C*[0,1], there exists a [l2k2€
(%2k-2, X2k) for which the composite Simpson’s
rule for N equal to 2M subintervals of [0,1]
can be expressed with error term as:

1 M 5
[ tgax = s(6,m) -3 P2 260, ) (12-0)
0 k=l F%

M
SEM = Y P22ty o) + 4 )+l (120)
k=1

Graded Nodes for Boole’s Rule
The interval [0,1] is subdivided into N=
4M subintervals, where

oo o8]-[2]

k=0,1,.. ,M (13-a)
1 1(k+1)* (k)

By =3[R = %] = z{('M—) 42 }

k=0,1,....., M-1 (13-b)

X4k+j = Xax +Jhgx, <4 (13-¢)

If f € Co [0,1], there exists a [lak-4€
(xX4k-4, Xax) for which the composite Boole’s
rule for N = 4M subintervals of [0,1] can be
expressed with error term as:

1 M
[ fox = BEM) - 3 s, ), (14-2)
0 k=1

945
M
2hg,
Bif,M)= > —
k=1

[Tak-a + 32645 + 12655 + 3265, + 76y ] (14-D)

Gauss-Legendre Rules on Graded Nodes
The interval [0,1] is subdivided into N
subintervals, where

B
X =[—] , k=0,1,..,N (15-a)
hy =[x, - %], k=0, 1,.....,N-1  (15-b)

If f e C6]0,1], there existsa |k €
(Xy> X4+1) for which Gauss’s rule with N-
Panel of [0,1]can be expressed with error
term as:
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I N-1 4)
» LSy ()
Jf(x)dx = G2(f,N) + > or (16-a)

1 N-1 (6) )
[ fxax = Ga(t, N) + bl ) (16.n)

0 k=0

where

N-1
. h, ) »
G2(f,N) = —;{f(xk +c,hy ) + (%, - Czhk)],

k=0

N-1
G3(f,N) = ZP—"‘-
k=018

[5f(xx + c3hk) + 8f(xk + 0.5hk) + 5{(xk + 1 — e3shk)]

3-43 _5-415

c, == and c; = T

TEST EXAMPLES
The following examples are used as
test examples :

f( a+x)"dx,

0

o, eR~- {(),],2,3}, az0 (17)

where all the quadrature methods used
here give an exactresults at 6= {1,2,3}i.e.
the degree of all formulae > 3.

1

2 [(®)"In(x)dx, ;>0 (18)
0
1

3) Je"’xdx, o, €R (19)
1

4) J.sm(-o—;—}ijdx, o, €R (20)

0

THE ALGORITHM OF COMPUTATION
The algorithm which is presented in

this section explain how the best value of 3
can be computed.

Begin:
1) Define the functions

a) the integrand f(x)
b) the exact value of theintegral
2) Input number of panel (M);
3) Input the value of o ;
4) For each ¢ do the following steps:
4-1) for § = 0.01 with step
0.01 do
a) compute the nodes;
4-2) For Simpson’s, Bool’s and
Gauss’s quadrature methods
do the following:
a) compute the value of integral
b) compute absolute error.
4-3) Compute the min. value of
error and its corresponding B
in every method.
5) Print the value of c and B .
6) Fit the curve of B against ¢
end.
The experiment shows that there are
a relations between o’s and [ for all
examples, and the values of f which give a
good results are not equal one (equal spaced
nodes).

NUMERICAL RESULTS

The pervious algorithm is used to
compute the values of definite integral for
the test examples given earlier. The
results are presented here to show the
difference between the graded nodes and
the equal spaced nodes when using the
quadrature methods. The results are
presented here in a condensed form.

Table 1 shows the value of absolute
error for Simpson’s , Bool’s and Gauss’s
quadrature methods at (M = 16). Every
method is used in two cases: i) equal spaced

(B=1) and ii) graded nodes (§ # 1). All
quadrature methods give good results when
used it on graded nodes compared with
equally spaced nodes. The results show that
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the ratio between the absolute error for
equal spaced and graded nodes are not
small specially for the large value of B (Ex.
2, see the ratio between the two cases at

o, = 0.3 and o, = 20).

A comparison between the absolute
error of graded nodes (8= 0.25) and its value
for equal spaced nodes (B= 1) at different
values of M is shown in Table 2. This table

shows that the error of graded nodes is
smaller than the error of equally spaced
nodes with different values of M. This
hppens in example (2) with o, = 20 when
using Simpson’s rule. Other examples give
the same results when using all formulae.

Table 1 The absolute error of equal spaced and graded nodes

Ex. o] B S{f, M) B(f, M) Mfl M! G3(f, M)
1) | -20 | equal 4.600X10° | 1.450X1077 3.050X10™° 1.390X10°"
1 8.350%10°° g o
4.840X10°% | 2.700X107° 3.230X10°% 2.930X10™
“F 3avoxiarr gl O A
2) 1.050X 1072 9.340X10° 4.580X10°
i 10010 HBOOX IO
5.420X10° 3.600X10
2.210X107 0
3) 4.050X10° | 9.370X10°° 2.690X 10"
3.360X1077 | 4500107 230X
g | equal 3.100X107% | 1.450X107° 2.070X10°
spaced . e | u—
=059 7.780X107° | 3.400%10°° | 5180X10°°  } 3.250X%
4 |1 [ equal 2.050%10° | 1.820X10712 1.370X10°8
spaced R -
{8=08s 1,760X107 | 0.0000 %1 0000
s | equal 5.560X1077 | 7.160X10° 3.710X10° 6.930X10°
_spaced : i
{s=121 | 3o00x16> |13

Table 2 The error of Example 2 at different M.

M Graded Nodes Error Equal Spaced Nodes
(B = 0.25) Error (B = 1)

2 |.3.103X10% 1.963X1073

4 | 1.748X10° 6.448X10™

8 | 6.655X1077 7.365X107°

16 | 2.023x108 5.422X107°

32 | 4.327x10°10 3.533X1077

64 | 2.000x10712 2.232X10°8

RELATION BETWEEN c AND
It is obvious from the previous results of
the algorithm that the value B depends on
c. The following figures show the relation
between the value of [ which has a min.
absolute error and o for the different
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examples. The X and Y axis represents ¢
and f respectively.

Figure 1 The value of B against ¢ of Example 1
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Figure 2 The value of b against s of Example 2

Table

of M.

16
-12
-8
4
1

Figure 3 The value of B against ¢ of Example 3

Table 3 Beta as a function of sigma

Figure 4 The value of B against o of Example 4

3 gives the curves which

represents the relation between f and c for
the first three examples at different values

M Example (1) Example (2) Example (3)
8 | B= 1.1246 Exp(-0.0344a,) B =5.4556/(1.337 + o) B = 0.9396 Exp(-0.046 o)
16 | p=1.1257 Exp(-0.03510)) | B =5.2592/(1.116 + o) B = 0.9407 Exp(-0.047 5 )
32 | p=1.1363 Exp(-0.0343 ;) | B =5.1872/(1.032 + 65) B = 0.9532 Exp(-0.046 o )
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CONCLUSION

The quadrature methods give a good
results when used on graded nodes
compared with equally spaced nodes at the
same number of subintervals. We
recommend to use the quadrature methods
on graded nodes. The value of B is
controlled by two factors: the first factor is
the sup. of the function and the second is
the large variation of the function. Ifthe
sup. of the function at x = 1 and the large
variation are near the same point, then p< 1
(example 1 and 3 when o is positive ). On
the other side if the sup. of the function at x
= 0 and the large variation in the interval
near this point, then, p>1 (examples 1, 3
wheno<Oand 2ifc < 1)).
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