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ABSTRACT

- gradient

Controlling the supersonic laminar boundary layer stability by induced pressure
is investigated. Various Mach numbers, Reynolds numbers, wave
frequencies, and wave angles are considered. It is shown that neglecting the non-
similar effect of the boundary-layer (as sometimes practised in literature) generates a
considerable inaccuracy of the results. Different classes of pressure gradient are
analyzed. The calculations show that accelerated flow stabilizes the boundary layer
while retarded flow disabilities it. The most unstable second mode is two dimensional
even when pressure gradient is induced. Simply retarded flows are more stable for low
frequencies than for high frequencies.
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NOMENCLATURE

X streamwise coordinate  parallel to
surface.

y  streamwise coordinate perpendicular to
X.

p  fluid density.

) fluid viscosity.

u velocity component in x-direction.

v velocity component in y-direction.

z  velocity component in z-direction.

p flow pressure.

Re flow Reynolds number based on L*

L* Characteristic length

R local Reynolds number based on
displacement thickness

y  gas constant (Cp/Cy)

T temperature.

Pr Prandtl number.

M Mach number

Cp gas specific heat at constant pressure.

C,y gas specific heat at constant volume.
non-dimensional velocity at edge of
boundary layer.

£(x) levy-lees variable corresponding to x.

N levy-lees variable corresponding to x

and y
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Bo similarity constant corresponding to
pressure gradient.

non-dimensional temperature at edge of
boundary-layer.

Te

o  disturbance wave number in x-
direction.
B  disturbance wave number in z-
direction.
o disturbance frequency.
Y wave angle.
Ci disturbance mode shape.
Scripts
physical (dimensional) quantity.
o free stream quantity.
i  imaginary part.
r real part.
b  basic flow quantity.
INTRODUCTION
Ever since Prandtl has founded the
concept of boundary -layer, scientists

attempt to investigate methods of its control.
In fact some of Prandtl’'s work at the
beginning of this century describes several
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experiments in which the boundary layer
was controlled [1].In doing so, one aims to
affect the whole flow in a described direction
by = influencing the structure of the
boundary-layer. Out of the same stream a
subject termed Laminar Flow Control (LFC)
emerged in the sixties [2] Unlike Boundary-
Layer Control, LFC is concerned with
maintaining laminar flow over a body or a
surface for the longest distance possible by
delaying transition to turbulent flow. Itis
well established that transition from laminar
to turbulent flow is preceded by the onset of
instability waves [3]. Actually these
instability waves  were theoretically
demonstrated by Tollmien [1] half a century
ago and were later called the Tollmien-
Shlichting (T-S) waves.

Later in the seventies, and due to the
energy crisis, more emphasis was placed on
LFC, especially since turbulent skin friction
is of the order of 50% of the total cruise
drag [4] of airplanes. The portion of the
turbulent friction drag gets higher for other
hydraulic applications. For example, for a
vehicle having a moderate Reynolds
number, applications of laminar flow control
provides a lucrative increase in fuel
efficiency [5]. The principal of LFC proved to
be a very important practical concept for
engineers, especially since its feasibility was
improved due to many factors that include
production of advanced high strength
materials, modern fabrication and
manufacturing techniques, and super-
critical airfoils [6].

Recently the increasing interest in
supersonic aircraft is provoking more
investigation of the stability of compressible
boundary-layer. By delaying transition to
turbulent flow, LFC can lead to considerable
increment in the range of supersonic
missiles and rockets and in the speed
maneuverability, and control of aircraft [7].
Moreover, LFC gained great attention lately
due to its role in the design of the national
areo-space plane (NASP). For the Ilater
application, in particular, the knowledge of
the exact location of transition and
controlling it is crucial for proper aero-
thermal design. The three most used

techniques in LFC are cooling or heating,
pressure gradient, and wall suction. Good
reviews of these techniques and their
application in incompressible flows can be
found in References 8 and 9.

Although the same techniques used
for the laminar control of subsonic flows can
be used for supersonic flows, the problem of
supersonic flow control is much more
complicated. For a comprehensive review of
the stability of compressible boundary layers
we refer the reader to the article of Mack
[10] and Maaitah [15]. In addition, Malik [12]
also attempted to calculate the effect of
pressure gradient on the stability of
supersonic boundary layer. His results,
however, are  questionable since his
assumption of self-similar velocity profile is
not valid for the Prandtl numbers he used.

All of the previously mentioned
works are restricted to a single Mach
number . An understanding of the physics of
the flow and the mechanism which LFC
techniques affect the stability of the flow is
still lacking for supersonic boundary layers.
In this paper we present a detailed and
comprehensive investigation of the effect of
pressure gradient, on the stability of
supersonic boundary layers. Wide ranges of
Mach numbers, frequencies, Reynolds
numbers, and wave angles are considered.
Furthermore, we present results for non-
similar and self-similar boundary-layers.

PROBLEM FORMULATION
Mean flow
We consider the two-dimensional

compressible flow over a flat plate with
streamwise variation of the edge velocity.
This is a basic Boundary-layer problem for
many geometries [1]. The basic-flow field is
governed by the compressible two-
dimensional boundary layer equations. For a
perfect gas the governing equations in a
non-dimensional form is as follows:
X-momentum equation:

du du dp 1 & ( Bu]
pU—+pV—=——F——| p—

ox oy dx Reody\ oy
Continuity equation:

(1)
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Energy equation:

2
oA dp ,‘_E( ?zj a-n (@) (3)
puax+;w@l_(y 1)M“’udx+RePr6y kby + Re Map o

where x is the streamwise direction and y is
the direction normal to the flat plate.
Velocities are normalized with respect to the
free stream velocity U", , lengths are
normalized with respect to a reference
length L°, and the temperature, viscosity,
and thermal conductivity coefficients are
normalized with respect to their free-stream
value T, p'», and, K, respectively. Here,
*

U*L* * p;C; C

Re= =P » Pr=""2L, andY= P (4)
5 k* *
Koo o Cy

Where C* and C°y are the gas
specific = heat coefficients at constant
pressure and volume, respectively. For a
perfect gas the non-dimensional equation of
state has the form

pT=pe Te (5)

Where pe and Teare the density and
the temperature at the edge of the boundary
layer, respectively. Away from the wall the
boundary conditions are

u->Ue, and T T, asy > o (6)

Where Ue and T. can in general be
found by solving the compressible Euler’s
equations.

The boundary conditions at the wall,
however, are different for the different flow
conditions. For flow with pressure gradient
over an adiabatic wall the temperature
gradient at the wall vanishes, that is:

oT
—=0 aty=0 7
0 (7)

It is convenient to re-formulate the
problem using the Levy-Lees variables[1],
defined as:

£ = [pnUadx . (8)
0

and.

U Yy
n,x,y=1fRezé = Ipdy 9)
0

then Equations 1 to 3 will be transformed
into the form:

(cEg)n+ o+ Boipe/p)(£)2=28( H,fe- ffr)  (10)
(a1Qn+az fffn), fQr=28(f Qr Qufy {11)

Where

u= U. £, (12)
=] ReUe e
" ‘[2_5” (£ +2€f,) - Ny 26 (13)
o= P i (14-a)
PeHe
_ dg, 14-b
Bo=(28/U) 5 (14-b)
Q=t/te (14-¢)
ai=c/pr (14-4d)
and
SR (14-€)
az_cTe a Pr)

The pressure gradient at the edge of
the boundary layer occurs due to the
variation of Ue with x. In general the
pressure gradient can be controlled by
changing the shape of the rigid body or by
placing a surface above the boundary layer.
The variance of Ue with respect to x is
represented by 3, in equation 10.

Malik [12] has assumed a self-similar
solution for compressible flows with
constant fo. Although this assumption is
valid for compressible flows where the
energy equation is de-coupled from the
momentum equation, it is not valid for
compressible flows with Pr unequal to unity.
For non-zero, Po, Ue varies with £ as shown
by Equation 14-b. Consequently this would
make the term a: in Equation 11 a function
of & for a non-unity Prandtl number which
forces Equation 11 to have both & and n as
variables. Hence the self-similar solution is
not valid.

In the present work the non-similar
boundary layer equations are used for
various ranges and types of pressure
gradient. For a constant f, >0 and <1 one
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can show that the dependence of Ue on x is
governed by the relation:

2-2B
(el
Usry By
—&———dU_=C x (15-a)
Pe“e

U,

Where Co is a constant which depends on
the dowmn-stream velocity and Bo for Co=1.
When o is positive the flow is accelerated
and when Po is negative the flow is retarded.

Other types of pressure gradient
considered in the present work are the
simply accelerated flows where

U,=1+x (15-b)
and the simply retarded flows where
Ue=1-x (15-¢)

After defining Ue and fo from
Equation 15 one can calculate c, a1, and as.
Furthermore, Equations 12 and 13 are
subjected to the following boundary
conditions:
f=1£=0, and Q= 0,=0 for

n=0 (16-a)
Q-1 and f—>1 asn—»> « (16-b)
f{€om)=fo (17)

Where f, corresponds to Blasuis profile.

Hence for a certain Prandtl number,
equations 10,14,16 andl7 are solved using
central differencing in the transverse
direction and  three-point  backward
differencing in the streamwise direction.

The dependence of the viscosity on
the temperature is given by:

| 1458x10° 5T

*
HoTY 1Y +104
69387x1077T*if T™ <1104K

Where T* is in K and p* is N.s/m?2.

In the present work it is sometimes
referred to the wind tunnel temperature,
which is defined to be the free stream
temperature based on the stagnation
temperature of 311 K. If the resulting T", is
less than 50 K it is set equal to 50 K. The
adiabatic wall temperature is taken to be the
recovery temperature Tr given by [1],

—if T*>1104K (18)

T,=Tw(1+\/ﬁYT—1Mi) (19)
STABILITY ANALYSIS

We comnsider the linear quasi-parallel
3D compressible stability of the calculated
2D mean flow field, on it we superimpose a
small disturbance and obtain the total flow
quantities in the form
4(x, 5,z 1) =q, () +q(X, ¥, 2 1) (20)
where q stands for u, v, w, p,p, p and T. The
hat stands for the total-flow quantities.
Substituting Equation 20 into the
compressible Navier-Stokes equation, and
linearizing with respect to q, we obtain the
disturbance equations:

3 du ow
af pbax+ub&+g(pm+pbal =0 (21

du ou dub) op
pb[ + Uy —+V = 6x+

{ 9[& Qm@]*
at ox oy ol ™™

x oy oz

(Dot on gl ) @2

v, w)_a 1gof (& o)
"“(a”"ax)_ % R [ (0y 6x)+pdy}

0 a ow a(ov ow (23)
mngey sﬂ]**‘ha(&w)}
ow
o ronie) B w3
o (ov ow af . v ow (24)
+g|ﬁl~‘|{h ayJ] )"ba( gx'+m5y—+r5]}
pb[§+ub%xr-+vc:i—y} (y —I)MZ[%EH: g+%¢i|
2
{MbaT 6( 6y P%)*‘Hb% (25)
2
Ou  Ov)du du
2| — L (——b) 26
B e (26)
where
r=§(e+2) and m=§(c—l) (27)
and e = O corresponds to the Stokes

hypothesis. The local Reynolds number R in
Equations 21-26 is based on a reference

length (5,*=yv*x* /U’ ), which is the order
of the boundary layer thickness where x*; is
the distance from the leading edge to the
location where the calculations are
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performed. Velocities are normalized with
respect to the freestream velocity (U*,) and
lengths are normalized with respect to (3%;)
Hence,

E % 5
R=U=S; - /Uixi‘ (28)
v¥ v

The boundary conditions at the wall

are:
u=v=W=T=0atY=0 (29)

For sonic, subsonic and supersonic waves
the boundary conditions away from the wall
have the general form[11]:

u, v, w, T, p, are bounded as y—>o (30)

We assume that L is only a function of the
temperature, hence

Brry=Ti(m) @D
Moreover, the linearized equation of state
takes the form

p/peT/Torp/po (32)

p=T

Because the mean flow is assumed to
be quasi-parallel, we seek a solution of
Equations 21-25, 26, 27, and 29 in the form
of 3D traveling Tollmien-Schlichting waves
as

[u,v,p, T, W] = [61(¥). §3( ) Ea (¥ §5(¥) &2 (0] *

exp[i( | adx+ﬁz—mt)] (33)

where o, and B are the streamwise and

spanwise wave numbers, respectively, and ®
is the frequency. Substituting Equations 30-
32 into Equations. 21-25, we obtain

DT,
DS, +ial, — T—"Q, +i(am, —)*
b
(M4 =22 ipE; =0 (34)
¥ b

: 3 5 T
i(auy, ~ @) +CyDuy, + T8, — —l-%{—p.b(raz + BZ)CL ~appy, (m +1)5,
+i(m + Dap, DE+pi DG, +iopy &, +1, DG, +D(uyDuy, )

+1,Du, D} =0 (35)

i(omy, —@)o3 + Ty DG4 —%{i(m + Doy, +imapil) —(412 + BZ)PbC3
+1 DG, +imBui G,
+HopyDuyCs +rp, D¢,
+i(m+1)Bp,DE,; =0 (36)

i(am, ~ 03¢, +iBT,E, 2 (-(m+ Dapu, + G,

+1(m+1)BDE; - pp(o + 187X, +pp DS,
D27} =0 (37)
i(omy — X5 +&3DT, —i(y = DT,MZ%(omy —0 X4 -

T i
E"[zDub(Dc1 +ia3) + 'y (Duy Yos]

L, [_P-b(az +B? )€5+D(Hngs)
RPr

sDDTLY] = 0 (38)
C.nl :Cz :Cs :Cﬂ:O aty =0 (39)

€, are bounded asy > o  (40)

where the prime denotes the derivatives
with respect to the argument and D = d/dy
In this work, we consider the case of
spatial stability so that o isreal. Because
the |Dbasic flow is two-dimensional,} is
constant, and we assume that f} is real and
o is complex so that
o=ourHion (41)
moreover, we compute o from the non
dimensional frequency F as

® =RF 42)
and we also compute the wave angle ¥ as
y = tan-! ( Bou) (43)

The eigenvalue problem is solved by
using the finite-difference code BVPFD [13]
coupled with the Newton-Raphson iteration
technique. This scheme produces results
that are as accurate as those obtained by
using SUPORT [14] with far less
computational effort. The analysis presented
here is valid for parallel flows, however, for
non-parallel flows one can use the
parabolized  stability equation analysis
(P.S.E) [19].

RESULTS AND DISCUSSION

After Calculating the mean flow and
for a chosen F, R and y we calculate the
growth rates at the profile and then we
march in the x direction to calculate the
growth rates at adjacent stations. We
present results for second-mode instability
waves, and since it has higher growth rates
than the first mode, it is more crucial for
transition at the investigated Mach number.
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As mentioned earlier Malik [12] attempted to
investigate the effect of pressure gradient on
the stability of supersonic boundary layer.
However, he, mistakenly, used the self-
similar velocity profile for Pr = 0.70 by
neglecting the left-hand-side of Equations
10,11. We reproduced his calculations with
a good accuracy when using a self-similar
velocity profile. Figure 1 shows the effect of
fo on the second-mode growth rates of a 4.5
Mach flow at R= 1500, Pr = 0.72 and wind
tunnel temperature using self-similar
calculations. As it is clear a positive value of
Bo of 0.025 is not sufficient to stabilize the
flow. In Figure 2, however, we show the
growth rates for the same flow conditions
but this time we used the non-similar
boundary layer calculations. It is obvious
That a value of fo of 0.025 is sufficient to
totally stabilize the flow at the Reynolds
numbers. Hence, using the self-similar
calculations, although considerably reduce
calculations  effort, it results in an
inaccurate calculations of the growth rates,
since the growth rates are quite sensitive to
the accuracy of the mean flow. By marching
downstream the effect of pressure gradient
on the second-mode-waves growth rates is
shown in Figure 3. Not only the growth rates
decrease as Po increases, but the critical
Reynolds number also increases, hence a
delaying transition further downstream.

Although for incompressible flows a
constant Po represent a flow over a wedge, it
is not the case for supersonic flows. In fact
that type of flow does not represent a flow
over a simple geometry. The dependence of
Ue on X is rather complicated as
demonstrated by Equation 15-a. In Figure 4
we compare the growth rates between
simply retarded, simply accelerated, and
constant Ue flows at 4.5 Mach. As the flow
accelerates it becomes more stable and the
critical R shifts downstream hence delaying
transition .

~a,x10°

1.0 1.2 1.4 1.6 1.8
r x10°

Figure 1 Growth rate versus frequency for various
Bo.self similar assumption, R=1500,
Pr=0.72, M,=4.5, and T, =121 K.

B 0

w

0.005

~n

~a Xx10°

0.015

e

| J,k 17

o

-1

1 1.6 1.8

g x10°

Figure 2 Growth rate versus fregency for various fo.
Non-similar assumption, R=1500, Pr=0.72,
M.=4.5, and T.=121 K.

On the other hand decelerating the
flow does not only increase the growth rates,
it also decreases the critical R and hence
advancing transition upstream.

A 268 Alexandria Engineering Journal, Vol. 36,No.6, November 1997



On The Stability of Compressible Boundary Layers with High Mach Numbers Part I

N

-u|xw’ 1

o

A
VRN

Figure 3 Growth rate versus frequency for various o.
Non-similar calcuations, Pr=0.72, M,=4.5,
Te=121 K, and F = 5x10-6.

-0.0
Bo for

accelerated flow

- 3 -
a‘xw u.., F 1% 0‘038

sl AN

1000 1250 1500 1750 2000
R

Figure 4 Growth rate versus R for simply retarded,
simply accelerated, and 2zero pressure
gradient flows. Non similar calculations,
Pr=0.72, M,=4.5, wind tunnel temperature,
Re = 2.25x108 and F = 130x106.

For that type of flow Bo is not
constant and it varies with X as described in
Equation 14-b. Figure 4 also shows the
variation of o for the retarded flow with R. It
is clear that B, decreases (becomes more
negative) as marching downstream.

ERROR ANALYSIS

In the mean flow analysis the
minimum stepsize in the 1 direction is 0.01,
while its value equals 0.05 in the x-
direction. The accuracy in calculating the
eigen value is (1+i)x106, while the
normalized error in the eigen function is
10-14. For adiabatic flow over flat plate we
compared our calculations of o with that of
Mack [10,11] and the agreement was up to
the sixth digit. As such no numerical
instability is expected in our analysis.

CONCLUSIONS

It is found that increasing M, seems
to have a destabilizing effect on the
accelerated flow as shown in Figure 5. For
the same frequency the growth rates are
considerably increased as the Mach number
increases from 4.5 to 5.0. Moreover, the
critical R shifts considerably upstream
enhancing an earlier transition. suprisingly
it is the other way around for the retarded
flow. Figure 6 shows that as M, increases
from 4.5 to 5.0 the growth rates decreases.
However, the trend of decreasing the critical
R still exists for retarded flows.

As shown in Figure 7 the most
unstable mode is still the two-dimensional
one, and for all R. Pressure gradient on the
other hand, doesn’t affect the wave angle of
the most unstable second-mode waves.
Figure 8 shows the variation of the growth
rates with R for different frequencies, it is
clear that the most dangerous frequencies
are the relatively high once.
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Figure 5 Effect of Mach number on the stability of

simply  accelerated flow, wind tunnel
temperature, Pr = 0.7, Re = 2.25x10%and F =
130x10-6 M,=5, ----Mo=4.5.
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Figure 6 Effect of Mach number on the stability of

simply retarded flow, wind tunnel
temperature, Pr = 0.7, Re = 2.25x108and F =
130x10-6. M, =4.5, ------ M, = 5.
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Figure 7 Effect of wave angle on the stability of simply
accelerated flow, wind tunnel temperature,
Pr = 0.7, Re = 2.25x108 and F = 130x106.
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Figure 8. Effect of frequency on the stability of simply

accelerated flow, wind tunnel temperature,
Pr = 0.7, and Re=2.25x108.
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