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This paper proposes a technique based on artificial neural networks for fault type
classification and faulted phase selection to be used in the protection of series
compensated transmission lines. The paper describes in detail the feature extraction,
sampling rate, data window length, and training of the desired artificial neural
networks (ANNs) . The basic idea of the suggested technique is to use an artificial
neural network to identify the fault based on extracting useful features in the desired
spectra within a certain frequency range. System simulation and test results are
presented and analyzed in this work to indicate the feasibility of using an ANN-based

protection scheme in series compensated lines.
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INTRODUCTION
The wuse of series capacitor to

compensate long transmission lines has

become an increasly common practice

during the last decade. This is because it:-

a) Increases the carrying capacity of
transmission lines.

b) Reduces the losses associated with
transmission lines.

c) Improves both the transient and steady
state stability cf transmission systems.

d) Controls the load flow between parallel
circuits.

Series capacitors are either located in
the middle of line for less than 50% or at
both its ends for compensation greater than
that limit. Capacitors are usually protected
against over-voltage by means of spark gaps
across the terminals and by-pass breakers.
Over the last decade, various techniques
have been presented to solve the problem of
protecting the series compensated lines.
Aggarwal et al. [1] proposed a high speed.
numerical method based on the directional
comparison principle. The basic feature of
their . proposed method is to wuse
communication channels for extracting
information about voltage and current
waveforms from both ends of the protected
area. The algorithm analyzes this information
and determines the location of fault.

e.g. transient

Protection, Fault Classification, Series Compensated Lines, Artificial Neural

Thomas et al. [2] developed an
algorithm based on traveling waves
technique. The algorithm uses correlation
techniques to recognize transient
components which departs from the relaying
points and returns to it later after a direct
reflection from the fault. From the timing of
the departure and arrival of these signals at
the relaying point, the location of fault can
be found.

Abou-El-Ela et al. [3]implemented
the phase modified Fourier transform
principle suggested by Johns [4] to estimate
the impedance of the series compensated
lines. He investigated the effect of the
subsynchronous resonance phenomena and
series capacitor flashover on the performance
of distance relay.

Finally, Ghassami et al. [5] modified
the technique proposed by Abou-El-Ela et al.
[3] and suggested a method for eliminating
the source of error in measurement of phase

to ground faults due to residual
compensation factor.
Neural network  applications in

electric power engineering can be categorized
into four areas: (1) prediction e.g. harmonic
evaluation, load forecasting; (2) classification,
stability analysis,

static/dynamic security assessment; (3)
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control and protection,; e.g. use of a power
system stabilizer, current controller of HVDC
system, adaptive autoreclosure; and (4)
optimization, e.g. capacitor control, economic
dispatching, topological observability.

This paper presents a technique
based on artificial neural networks for fault
type classification and faulted phase
selection to be used in the protection of
series compensated transmission lines. The
feature extraction and topology of neural
networks are discussed in detail.

DIGITAL SIMULATION STUDIES

Highly accurate digital simulations for
faulted series compensated lines were used
to produce voltage and current waveforms for
different types of faults on a line
configuration shown in Figure 1. These
simulation programs are based on the work
of Aggarwel and Johns given in Reference 6.
Due to the length and memory requirement,
primary system simulation was performed on
a main frame computer (DEC VAX 8600) and
the resulting waveforms data files were
down-line loaded to 80-486 personal
computer where the relay simulation is
performed.

The faulted feeder for the system
under study is a single circuit 500 kV. The
earth plane resistance is taken as 100 Q.m.
and the line length is considered to be 300
km. The reactance to resistance for both local
and remote sources is 30.0. The zero to
positive sequence impedance ratio for both
local and remote sources is 1.
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Figure 1 Typical system configurations studied.

All 500 kV lines of lengths Li=Li=
300 km; symmetrical short circuit levels for
sources: Gi1= Ga= 6GVA, Go= 0.25 GVA .

Figures 2 and 3 show the voltage and
current waveforms under an a-phase to
ground fault occurring at 80% of the
compensated transmission line. From Figure
2, which indicates the a-phase voltage across
the sending end capacitor, it can be noted
that when the fault occurs the a-phase spark
gap conducts and limits the fault voltage to
below the protective level. The curve in
Figure 3 expresses the current through the
a-phase spark gap. [t is shown that once the
phase voltage exceeds the preset value, the
a-phase spark gap operates. Otherwise, the
spark gap does not conduct, and the
capacitor is kept in the line all the time.
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Figure 2 a- phase voltage across sending end capacitor
under a-phase to ground fault occurring at
80% of the line
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Figure 3 Current through sending end spark gap under a-
phase to ground fault occurring at 80% ofthe line.

NEURAL NETWORKS

Neural computation is now one of the
most promising technologies in all fields of
engineering resulting in the development of a
number of artificial neural networks. The
basic techniques can be divided into three
groups: (i) multilayer perceptron; (ii) self-

B 178 Alexandria Engineering Journal, Vol. 36,No. 6, November 1997




organization feature mapping developed by
Kohonen [7]; (iii) massively interconnected
neural networks such as the Hopfield net or
the Boltzman machine [7].

The first type has found applications
in wide variety of areas. The most popular
learning algorithm for adjusting the weights
for a multilayer neural network is the back-
- propagation (BP) procedure. It is based on a
steepest-descent approach to minimize the
‘prediction error with respect to connection
‘weights in the network.

' The net used in BP procedure is
feedforward neural net (FNN). It contains an
~input layer, an output layer and possibly
- many hidden layers. Each layer can have one
- or many processing nodes (neurons). The net
" input to each neuron in each layer is:

v = Z WX (1)
]

where wj is a set of weighted links and xjis a
set of inputs may come from other neurons
or from outside sources. Sum of all weighted
inputs represents the node activation. The
node output is determined by an output
function, which represents this activation.
Frequently the so called sigmoid output
function is used;
1

f(I?\,; | ot - @
- with derivative:
- E=RO)(1-f(1)) (3)

The node output travels along the link, either
- to other neurons or to the output of the
system. The error in the output layer is the
difference between the desired output and

actual output:
desired __ actual

E™ =y y; (4)

: The error in the middle layer is
backpropagated from output layer and
multiplied by the derivative of the middle-
layer neuron’s activity in forward pass:

)R output
% o 5
d - JE'] leEJ ()

The error E and output from previous
layer’s neuron (incoming signal) are used to
adjust the weight changes using the
generalized delta rule given by:

middle _
i
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AW = B E f{I) + oo AWjjprevious (6)
(0.L0<B<1.0)& (0.0 << 1.0)

where, o is the momentum constant and p is
the learning constant.

BP algorithm is described in detail in
reference[7]. The feedforward neural net used
by this algorithm is shown in Figure 4.

Output Response
Output
Layer
Middle
Layer
Input
Layer
Input Pattern
Figure 4 Feedforward neural network
THE STRUCTURE OF ANN

We used in this study the same
structure of ANN suggested by Dalstein and
Kulicke in Reference 8 Figure 5 shows the
structure of this network. The input neurons
receive the samples of the normalized
currents and voltages at a rate of 1 khz. Five
Consecutive sample points of current and
voltage of each line are used as inputs.
Therefore 30 inputs nodes build up input
layer. It also comsists of two hidden layers
and an output layer with 11 nodes. Each
output is responsible for one fault type,
except the first node that signals the normal
state. Therefore any time of this 11 outputs
is mapped to a value of 1 and all other nodes
are mapped to a value of O.

TRAINING AND RESULTS

The program used for generating
voltage and current samples at relay location
is based on the work of Aggarwal and Johns
[6]. The data extracted from this program is
used to train and test the ANN suggested by
Dastein and Kulicke [8]. Data patterns for
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different fault types used in the training the
ANN extracted for fault locations at 50% of
the compensated line, 100% of the
compensated line and 20% of the
uncompensated line in reverse direction as
shown in Figure 1
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Figure 5 Fault type classification net.

Two cases have been studied to train
and test the ANN. First voltage and current
patterns are used without filtering. Second a
band-pass digital filter is used to extract the
useful features of the patterns.

Training and testing without filtering

Figure 6 shows voltage and current
spectrums at relay locations for three line to
ground fault at 50% of the compensated
line. Five equally spaced samples from each
pattern  are extracted and Tablel is
formulated. The first column of this table
represents the values of phase voltages and
line currents at fault instant. Other four
columns represent the values of these
patterns at = other consecutive samples.
Similar tables can be formulated for other
fault types at other fault locations.

It has been found , that a net with 30
inputs 20 nodes in the first hidden layer, 15
nodes in the second hidden layer and 11
outputs (30-20-15-11) is capable to minimize
the error E to a final value of 0.01. We used

the Backpropagation Training Algorithm with

dynamic learning rate. Therefore, the
possibility of weight changing decrease cycle
by cycle until training is stopped. This
learning strategy converges quickly. In
Figure 7 we demonstrate the learning error E
over 317 iterations. One can see that the
learning error decreases in 317 iterations to
0.01.

The ANN is tested by two data sets.
First the data set used for training the
network is used another time for testing.
Table 2 shows that all nodes response
correctly for this data set. The second data
set used for testing the net is extracted from
20% and 80% fault locations. The output of
RSTG node does not response correctly for
both fault locations as shown in Table 3. This
means the feature of the RSTG patternsis
not recognized by network for fault locations
other than used in the training.

Filtering the input data by band-pass filter

The frequency response of the filter
used in this study is shown in Figure 8. It
has 4 kHz sampling rate and 6 msec data
window length. This filter is used to extract
the high frequency harmonics and DC offset
from the voltage and current patterns. Figure
9 demonstrates the filtered patterns for
three line to ground fault at 50% of the
compensated line. One can see that the filter
is capable to remove unwanted noise from
the signals.

Table 4 is formulated by decimating
down in time the filtered patterns to 1Khz
and five consecutive samples after 6msec
(the length of the filter) from the instant of
the fault are extracted from the voltage and
current patterns. This table represents the
input pattern to ANN for three line to ground
fault at 50% of the compensated line. Similar
tables can be formulated for other fault types
at other fault locations.

The structure of ANN (30-20-15-11)
used in the first case has been used here for
a second time. The network is capable to
minimize the error E to a final value of 0.01.
In Figure 10 we demonstrate the learning
error E over 584 iterations. We can see that
the learning error decreases in 584 iterations
to 0.01.
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Figure 6 Voltage and-current patterns observed by
sending end relay for 3-line to ground fault
at 50% of the compensated line.

Table 1 Input to ANN for three line to ground fault at

50% of the compensated line.
Sample’s Number
1st 2nd 3rd 4th 5th
Vr 1737.2 54999 109190 118200 229880
Vs -354150 | 184680 -369480 22868 -375560

Vr 352390 -254130 276689 -149710 | 184380

Ir 275.38 552.87 1076.9 2105.39 | 2944.7

Is -129.77 -589.94 -2075.8 -3051.6 -4084.1

Iz -154.56 2.876 954.65 888.38 1087.7
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0.45 Learning error
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Figure 7 The learning error for training without filtering
the input data.

Table 2 Testing the ANN with the training data

Output of ANN for the training fault locations
Fault Types | 50% 100% 20% in Rev.
RSTG 0.994 0.997 0.995
RG 0.971 0.971 0.981
SG 0.98 0.978 0.978
TG 0.992 0.992 0.991
RS 0.959 0.959 0.959
ST 0.9895 | 0.985 0.984
TR 0.9654 | 0.965 0.96
RSG 0.964 0.964 0.98
STG 0.991 0.973 0.993
TRG 0.986 0.986 0.984

Table 3 Testing the ANN with data extracted from 20%
and 80% fault location patterns

Fault Fault Output of Output of
locations types fault type other nodes
node
20% RSTG (o] 0 except TRG
= 0.9869
20% RG 0.9572 0
20% RS 0.9592 0
80% RSTG 0 0 except RG =
0.9359
80% RG 0.9717 0
80% RS 0.9592 0
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It is noted the number of iterations in
this case is different from the first. This is
because - the initial weight values and the
training set used here to train the network
are different from those of the first case.

Two tests have been done to check
the response of the network for the input
data patterns. First the training data set have
been used and we can see from Table 5 that
all nodes respond correctely for this set. The
second data set is extracted from 20%,
40%, 60% and 80% fault locations. We can
see from Table 6 that network responds
correctly for fault locations not included in
the training data set.

The input patterns to ANN in the first
case have different frequency components
other than the fundamental. These different
frequency components are, generally, a
decaying DC component and non
fundamental frequency (non-50 Hz)
components [6]. But the input patternsin
this case are clean from a decaying DC
component and is much less corrupted by
nonfundamental components as shown in
Figure 9 It is evident that the band-pass
filter with characteristic shown in Fig. 8 is
capable to compress the range of the feature
signals and improves the performance of
ANN.
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Figure 8 Frequency response of the digital filter.
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Figure 9 Filtered patterns observed by sending end

relay for 3-line to ground fault at 50% of the
compensated line
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Table 4 Filtered input to ANN for three line to ground
fault at 50% of the compensated line.
Sample’s Number
1st 2nd 3rd 4th 5th
Vr | 146005 36286.1 | -34163 -168243 | -139674
Vs | -26842 233836 149452 270211 110443
Vr | -75941 -237413 | -85813 -155451 | -27835
Ir | 2581.96 | 2938.9 2894.6 2498.4 1485.5
Is -2552.8 -1443.4 -364.16 817.883 1947.36
Ir -111.74 -1712.6 -2832.8 -3549.5 -3445.3
0.5 .
Learning error
04
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Figure 10 The Learning error for training with filtering
the input data.

Table 5 Testing the ANN with the training filtered data.

Output of ANN for the training fault locations

Fault Types 50% 100% 20% in Rev.

RSTG 0.9952 0.9952 0.9851
RG 0.9949 0.9949 0.9949
SG 0.9942 0.989 0.9942
TG 0.9965 0.9965 0.9965
RS 0.9955 0.9955 0.9956
ST 0.9858 0.9858 0.9858
TR 0.9877 0.9194 0.9937
RSG 0.9932 0.9932 0.9942
STG 0.9498 0.9498 0.9971
TRG 0.9984 0.9748 0.9993

Table 6 Testing the ANN with filtered data extracted from

It is possible to increase the data
window length more than five samples and
include the different frequency components
in the fault signals. This will improve the
performance of the ANN in the first case but
slow the decision of tripping signal made by
the relay. But, according the power system
protection requirements, the faster the trip
signal needed, the shorter the data window
required. Therefore, an increasing data
window length of the ANN to include different
frequency components in the faulted signals
is not suitable for power system protection.

CONCLUSIONS :

This paper proposes a technique
based on ANN’s for fault identification to be
used in protection of series compensated
lines. Two cases have been studied to train
and test the ANN. First the input patterns
are extracted from the corrupted voltage and
current waveforms. In this case the network
responds incorrectly for patterns not
included in the training data set. In the
second case a band-pass digital filter is used
to compress the frequency range of the input
patterns to the network. This will improve
the performance of the network as shown by
the results in table-6 but delays by 6 msec
the trip signal made by the relay.

APPENDIX
The line self and mutual impedances
are given below:-

Z1=0.0345+J 0.309 Q/km
Zo = 0.2979 +J 0.99894 Q/km
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