FINDING THE STABLE STATE ATTRACTOR OF THE DISCRETE HOPFIELD
NETWORK USING AN OJA-LIKE NEURON

Amin Shoukry
Computer Science Department - Alexandria University

Alexandria, 21544 - Egypt
email : aminsh@alex.eun.eg

A quadratic objective (energy) function; that is logically derived from the corresponding
objective function of the Discrete Deterministic Hopfield Neural Network (DDHNN) ;is
formulated. This formulation adopts a new look to the operation of a DDHNN (with N
neurons) : instead of considering the Hopfield weight matrix (W) as a projection operator
that acts upon the state vector (u), it adopts a dual view by considering the projection of the
row vectors of W on u. This alternative view has made possible the realization of the idea of
finding the stable state for a feedback attractor network by a pure feedforward network of
lower complexity at the expense of an increase in the time complexity of the proposed
technique. The convergence and the complexity; in terms of storage space and execution
time; of the proposed algorithms are discussed. The paper, also, points to a new
deterministic version of the (unsupervised) OJA constrained Hebbian learning rule that is
especially useful in calculating the eigenvector corresponding to the maximal eigenvalue of

a real and symmetric positive definite matrix.
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INTRODUCTION

A.- About the Discrete Deterministic Hopfield
Neural Network (DDHNN) .

A DDHNN [1,2]is an auto-associative network

of artificial neurons with symmetric
connections and  asynchronous update

strategy. The mnetwork activity dynamics
converge to a steady state corresponding to a
stationary point that is a minimum of the
following objective function :

1 N N N

Ez‘EZZWi,juin - Zeiui (1)

=1 jl il :
where, W is an N*N (symmetric with zero
diagonal) weight matrix [wi], wy is the weight
between neurons (i,j) and wu(t) is the output
state vector (of dimension N) at time t, given as:
ui(t+1) = sgn(neti(t)) = 1 if neti(t) > O,

= -1 otherwise,i= 1,2,.. N,

and

N
net; (t)= }: wiu; ()t 6; (2)

i=1

where 0; is the threshold of neuron i.
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Letting un+1 = 1 and win+1= 6i = Wn+1,i, 1=
1,2,...,N, wn+1,v+1= O, the Hopfield network may
be considered to have N+1 nodes, with the
weights connected to the N+1th node
representing the threshold values. Therefore,
(1) may be written as :

1 N+l N+l
E=-—ZZWLJ ui uj

2 =9 .

; (3)
E=-—u" Wu

5 u

Since W is real and symmetric, its
eigenvalues are real and its eigenvectors are
orthogonal. Let A1 > A2 2 A3 ...... 2 An+1 be the
eigenvalues of W and e, ez, ..., en+1 be the
corresponding orthonormal eigenvectors. It
should be noted that because trace(W) = 0,
some of the Ai's are nonnegative and the
remaining are negative. Therefore W is
indefinite and it is possible that |An+1] > |21].
An equivalent statement is that although W
and W2 = WWT have the same eigenvectors but
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with eigenvalues Ai and (Ai)2, respectively, they
do not necessarily have the same order of the
eigenvalues.

The analysis, given in [4], of the dynamics of
the discrete Hopfield model, asserts’ that (3)
converges to the nearest hypercube corner in
the direction of e; (the eigenvector of the
connection matrix W corresponding to the
largest positive eigenvalue). If A1 is degenerate,
then there exists a corresponding subspace
instead of a corresponding eigenvector. In this
case, the whole of this subspace is considered
as the location of the minimum of (3).

Also, one may note that if Wis made
positive definite (with the same eigenvectors),
then it is a standard result [5] that; for a fixed
fuj| (where | || denotes the euclidean norm
operator), i.e., u is constrained to lie on a
hypershere; (3) would be minimized when u is
along a maximal eigen direction of W (or WWT) .
Therefore, we have the following result :
if W is made positive definite then the
direction that minimizes the Hopfield function
(3) (with u constrained to lie on a hypercube) is
the same direction that maximizes the following
objective functions : (with u constrained to lie

on a hypershpere):
Fl = u" Wu, “4-a
F2=u" WW'u (4 - b)

The objective of this paper is to solve (3)
using (4b) as an energy function for a
feedforward network of lower space (or
synaptic) complexity than the Hopfield
network. Since, currently, the bottleneck in
designing neural hardware is the number of
connections per unit area, this line of thought;
besides its conceptual value; can lead to
practical neural solutions to existing real life
problems.

B. Organization of the Paper .

The remaining of the paper is organized
as follows : Section I outlines the motivation of
the paper and its relation to the DDHNN.
Section II discusses the preprocessing of W to
make it positive definite while retaining the
same maximal eigen direction. Section III
discusses how a simple Oja-like feedforward
network will serve our purpose of calculating
the maximal eigen direction of the
preprocessed Hopfield weight matrix W. The
complexity; both in time and space; of the new
proposed algorithm is estimated. SectionIV
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presents a simple example that illustrates the
basic idea proposed in this paper and finally,
the paper is concluded in the last section.

I.MOTIVATION BEHIND THE PRESEN WORK.
A..- Informal Discussion :

The initial motivation for the present work
was the study of the relation between the
DDHNN and clustering algorithms (both
classical and neural)] due to the following
observations :

(i) Intuitively, it is known that the activity of a
DDHNN stabilizes with its set of neurons
partitioned into two classes; each class includes
neurons reinforcing each other. This,
obviously, corresponds to a (hard) clustering
process. Clustering is the (unsupervised)
process of grouping patterns into groups
(clusters/classes) according to a certain
similarity criterion.

(i Most neural networks doing clustering are
single layer feeedforward networks. It seems
natural to inquire whether a feedforward
network; that explains the clustering behavior
of the DDHNN; exists.

(iii) A strong analogy has been shown to exist
between annealing and clustering [6] as well as
between annealing and the Hopfield model [7].

(iv) An equivalence has been shown to exist
between the running of the Minimum Cut
Algorithm (MCA) [8] and the running of the
DDHNN. The operation of the MCA is very
similar to that of a clustering algorithm (such
as the K-means algorithm [9]), and it is at the
origin of the new look, taken in this paper, to
the role of both the weight matrix (W) and the
state vector (u) of a DDHNN. This is formally
discussed in B, below.

B. Formal Discussion :

Mathematically, (using the same notation
used in the Introduction the running of the
DDHNN partitions its set of nodes into two
disjoint subsets (called V: and V.1) such that :
ui = 1 if nodeieV;, and uj=-1 ifnodej eV...
Equivalently, we have uTw; > 0 fori eV, and
uT wi <O forj eV.i, (wi corresponds to a row in
W). Therefore, the following objective function
is maximized by the running of the DDHNN :

N+1
f@wwW) = 2] u'w [

i=1
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= > u'wiwu
i=1

N+1

= 'O wiwiHu
=1

‘ W is a real and symmetric matrix, (5a) can be
written as

(5-a)

E = W"WW'hu (5-b)
It can be noted that (5-b) has exactly the same
form as (4b). This shows how (5b) can be
" derived, logically, from the HDDNN and that it
is equivalent to it if W is a positive definite
matrix and wu is constrained to lie on a
hypersphere instead of a hypercube . Moreover
"W WT in (5b ) represents a correlation matrix
- and, therefore, is similar to the objective
- function maximized by the one unit Oja
- feedforward network. This result motivated the
- remaining of the paper and justifies the title of
~ the paper. Provided that W is made positive
definite, an interesting duality results between
the role of each of W and u in both the
feedback (Hopfield) and the feedforward
network: the Hopfield weight matrix (W)
becomes a set of vectors (patterns) that are
projected on u. In his turn, the vector u, now,
defines a hyperplane (u is the normal to this
hyperplane) in the weight space that is adapted
to act as a two-class classifier for the weight
vectors (the rows of W).

II.- TRANSFORMING THE HOPFIELD ENER-
GY FUNCTION TO A POSITIVE DEFINITE
FUNCTION

The idea presented in this section relies
on certain properties of the Hopfield model as
well as on some well known properties from
matrix algebra. First, theorem (1) when

. associated with Property (1); given below; allow

. one to increase the diagonal elements of W by

an amount A.>0, without changing the nature

of the final steady state solution.

Theorem(1) [8] (On the convergence of the

discrete Hopfield model):

Let H = (W,0) be a Hopfield neural network.

Assume that H is operating in a serial mode

and that W is a symmetric matrix with the

elements of the diagonal being nonnegative.

Then the network will always converge to a

stable state, that is, there are no cycles in the

i state space.

. Property (1) (Shift of eigenvalues origin):

' If A is an eigenvalue of A, then A + Acis an
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eigenvalue of (A + o I), where I is the identity
matrix. The eigenvectors remain the same.

In order to obtain an estimate for A, that
ensures the positive definiteness of W +k. I,
theorem(2) is needed,

Theorem (2) [10] If A is a real n*n matrix, then

[(A™A)" = |Al,
where, ,, (A) denotes the spectral radius of a
matrix A, defined as p(A)=max |A| ,Aisan
eigenvalue of A and ||A| is the l2 norm.
Since, in our case, W is symmetric, then we
have trace (W WT ) =

N N
> WP =2 "> p(w)

i1
Therefore, taking Ao= trace (W WT) ensures that
all the eigenvalues of (W + X, I) are positive, i.e.
(W + %o I) is non-singular.

In the next section, a learning algorithm
for a single neuron network is proposed for the
extraction of the maximal eigen direction of the
positive definite matrix (W +Xo I ), which from
the discussion given in the present section, is
the same as the maximal eigen direction of W.

III- A SINGLE NEURON-BASED LEARNING
RULE FOR THE CALCULATION OF THE
MAXIMAL EIGEN DIRECTION OF THE
HOPFIELD WEIGHT MATRIX

The algorithm proposed in this section
is similar to the Ojalearning rule [11] for the
calculation of the principal component of a
random matrix, given as:

m(k +1) =m(k) + r(k) y(&) [x(k)- y(k)m(K)] 6)
where k is the time step, x(k) is a sequence of
random vectors €Rn; generated from a time-
invariant statistical distribution characterized
by its mean vector p and its covariance matrix
C=<(x-p)"(x-pn)> (where <.> denotes the expec-
tation operator); m(k) is the weight vector, of
dimension n, of the (linear) neuron whose
output (y) is given by: y(k) = x"(k) m(k-1) and
r(k) is a positive scalar called the learning rate
that satisfies:

;r(k) =00 ,Zrz(k) <00

that is decreased to zero as k approaches
Based on the theory of stochastic
approximation, m(k) converges to the first
normalized principal component of matrix C
with probability one as k approaches o. For
zero mean data, the maximal eigenvector is
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equivalent to the principal component of the
data. Equation (6) has the advantage of
depending on locally available variables for
updating of the weight vector. Also, recently in
[12], it is proven that there exists an energy
function whose steepest descent direction is
the same as the average evolution direction of
(6). This energy function is of the form

F(m) = m"m-In(m"Cm) (7)
and its gradient VF = (.. £ ) (8)
m'Cm
The stationary points of Equation 7 are the
normalized eigenvectors *w: (i=1,2, ..., n} of

matrix C, with corresponding eigenvalues
denoted yi. However, only the Hessian matrix
V2F(tw1) is positive definite, while V2F(t vj) is
indefinite for i=2,..., n. Therefore, Equation 7
has two global minimal points that correspond
to the two converged points of the one unit Oja
learning rule and has no other local minimal

points.
Noticing that :
<yx> = Cm, <y> = m'Cm )

and letting the learning rate r(k) in (6) be
dependent on the estimated value of y1 (as
observed in [13]), calculated as

y1(k) = m(k)TCum (k) /|lm(k)||? , such that,

) 10
r(k) o 3 (10)
where B(k) is decreased to zero as k approaches
infinity, it can be seen that Am in the Oja rule
(6) is proportional to the negative of VF (given
in (8)).

B.- The New Proposed Algorithim
Let C be the (N+1)*(N+1) matrix :

(W+io I)T(W+AoI); where the matrix (W + AJl) is
obtained as explained in section II. One can
easily show that the Hessian matrix of the
energy function (7) still preserves the same
properties with V?F(tei) positive definite and
V’F(te) indefinite for  i=2,..., N+1 (ei and Ai
denote the eigenvectors and eigenvalues of W,
respectively).

It is worth noting that choosing C = (W + A.]) is
also valid, but the above choice accelerates the
convergence of the algorithm proposed below
(because the eigenvalues of (W+LoI)T (W+A.I) are
the squares of those of (W+).I), and, therefore,
the discrimination between the maximal
eigenvalue and the remaining ones is sharper),
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and makes better use of the properties (9) of
the Oja algorithm. The proposed algorithm
updates the weight vector m in a deterministic
way (i.e, (k) in Equation 10 is set equal to one)
and in the negative direction of VF (given in
(8)), as follows :
mlc+ D =m@) + () (Cm-Adom] (11
where, A{k) corresponds to an estimate of the
maximal eigenvalue of matrix C (i.e., A=(A1+ho)?)
evaluated as :
m’ (k) C m(k)

[mcioff

calculated from the network inputs and
outputs as given in (9). It should be noted that
since C is no longer a covariance matrix, there
is no need to calculate the mean of the input
vectors, as well as to its substraction from each
of them. The new algorithm can be described in
pseudocode as follows : ’

Cm(k) and mT(k)Cm(k) are

Proposed algorithm :

The algorithm consists of two phases :

(i) a preprocessing phase in which a scalar (L)

is estimated (as explained in section II), so that
(W+AoI) becomes a positive definite matrix. In
this phase, the rows of W are presented,
sequentially, to the input of a linear neuron;
having a variable weight vector of size (N+1)
(i.e. equal to the size of each row in W). At each
input presentation, the neuron weight vector is
set equal to the input vector. Therefore, the
output from the neuron gives the square of the
norm of the input vector. Obtaining the
summation of the output values over the (N+1)
input presentations gives the required estimate
for Ao .
(ii) an Oja-like training phase (also using a
single linear neuron, as in the previous phase),
to calculate the direction of the maximal
eigenvector (i.e. the eigenvector corresponding
to the maximal eigenvalue) of{W+LoI)T (W +1oI).

1: Preprocessing of W _to calculate o using a
single linear neuron

{Initialize}

sum € 0,

Fori € 1 to N+1 do
begin

Present row i of the Hopfield weight matrix

W to the input of the single neuron network

set m& wi {m is the weight vector of the
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rory
Calculate the output y <~ m” wi,
sum <« sum + vy
end {For}.
Set Ao ¢ sum

augment the diagonal elements of W by this
amount.

2: One unit deterministic Oja network training

algorithm
2.1 network initialization
{Initialize}

time counter k « 0O,
the weight vector m(0) € R™! with small
random values, the first guess and next
guess of the maximal eigenvalue {called
eigen_first and eigen_next to suitable
values to activate the main loop of the
algorithm (step 2.2).
2.2 network learning algorithm

{lterate Until Convergence}
while abs(eigen_first - eigen_next) > € do
{eis a very small positive number}

begin {while}
eigen _first « eigen_next,
eigen _next « O,
v « O {v avector of dimension N+1, that

corresponds to Cn in (9), is initialized to the zero
vectors,

{Read training data. Training is per epoch (i.e.
in batch mode) not per sample}
fori«-1 to N+1 do

begin {for i}

Read row i of the Hopfield matrix and
present it to the network input as vector
X cRN+1;

Calculate the output y « m" x,

Update vector v :

for j <1 to N+1 do v[j] « v[jl+y*x[j],
eigen_next « eigen_next + sqr(y),

end {for i}

{Weight vector Updating}
eigen_next « eigen_next/ | m(k)%;
m(k+1)m(k)+(1/eigen_next)*(v-cigen_next*m(k)),

{Increment the time counter}
kek+1,
end {while}.
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C.- Algorithm Complexity

Assuming a hardware model composed
of a digital RAM of size O(N2?) to store the
(N+1)*(N+1) weight matrix W and an analog
parallel hardware consisting of a single linear
neuron with a synaptic weight vector of size
O(N) (therefore, network operation is assumed
in parallel. Only the presentation of the input
vectors is serial), the complexity of the above
algorithm; in terms of both storage capacity
and execution time; can be estimated as
follows :
The  Space Complexity for both the
preprocessing phase and the network training
Phase is the same and is of O(N?) for the
digital RAM and of O(N) for the analog neuron.
One may note that, the size of the RAM can be
reduced to a minimum if the weights are
generated on-line (using the mnecessary
arithmetic operations). This, of course, will
increase the time complexity.

The crucial point is the following : because
the current bottleneck in designing neural
hardware is the number of connections per unit
area, optimizing the Hopfield objective function
using a neural network with O(N) weights in
addition to a RAM of O(N?) is better than
designing a purely analog hardware with O(N2)
weights (especially when N gets large).

The Time Complexity :

(i) the Preprocessing Phase : of O(N) to
estimate Ao.

(i) the Network Training Phase : of

O(Nepoch*N), where Nepoch corresponds to the
number of passes over the complete training
set which includes (N+1) training vectors.

IV- ILLUSTRATIVE EXAMPLE

In this section a simple example is
given for the purpose of illustration. However,
the objective of this work is to reduce the
complexity of the neural network needed to
solve optimization problems whose objective
functions have a large number of independent
variables and that have a one-to-one
correspondence with the Hopfield energy
function (1).

Consider the following Hopfield Energy
function; given in [2]; that describes the design
of a 4-bit A/D converter as a simple
optimization problem :
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3
D (=29

3
max E = -
=0 i#j=0 (11 -a)

woN | -

- 22 42 )
i=0 ,
where u is the output state vector, and x is the
analog input. Equation (11a) is of the form (1) if
= 20D 0<i, j<3,i#],
(11-b)

0, = (-2%Y + 2'x), 0<i<3.
Taking x (the analog input), in the range O<x
<15, equal to 7 (say), then the HNN has the
following parameters:
# of nodes = 5 = 4 + 1 (for the bias node).
Weight Matrix =

Wij

0 -2 -4 -8 6.5
-2 0 -8 -16 12
-4 -8 0 -32 20
-8 -16 -32 0 24

6.5 12 20 24 0

The weight matrix has the following 5 distinct

eigenvalues; listed in a descending order
33.53939, 19.05957, 6.431604, 1.377108,
-60.40766. The maximal eigenvector e

associated with the maximal eigenvalue has
been calculated by applying Jacobi's numerical
method ], and is found to be

€1=[0.07816665 0.1755662 0.6139752-0.7591278 -0.09912797F

It follows that the final state of the
Hopfield network can be obtained by hard
limiting each component of the maximal
eigenvector. Therefore, the final state vector is
found to be u' = sign(e;) = [ 1 11 -1 -1].
Excluding the state assigned to the threshold
neuron (the last component of u' ) and
considering that the first component (the
leftmost) corresponds to the least significant
bit, the final state vector is the correct bipolar
representation of the analog input '7'. It may be
worth noting that the vector (-e1) is also a valid
solution that results in an interchange of the
set of neurons assigned to 'l' with the set of
neurons assigned to -1' [8].

Applying the new technique proposed in
section III to solve the same example, the
solution proceeds as follows :

1.- Preprocessing : trace(WWT) = 5180.5,
therefore, Ao is selected equal to this
number.The diagonal elements of W are set
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that,

to the value of A .
2.- The neural network training algorithm is

initialized with , (the tolerance of the

stopping criterion)= 0.001, the initial weight

vector of the network is set (randomly) to :
m(0) = [0.096 0.117 0.109 0.002 0.153].
The algorithm took 64 training epochs to
converge to the following results :

final weight vector :
m'=[0.078 0.176 0.614 -0.759 -0.099 |
and its corresponding eigenvalue A =

2.7186e+007. The corresponding eigenvalue of
W is J/A*- % = 33.5394. Comparing these
results with those obtained using Jacobi
method, it can be concluded that their
precision is quite high.

CONCLUSION

This paper presents a new technique to
derive the stable state for an feedback attractor
network by a pure feedforward network of lower
complexity. This technique optimizes the
Hopfield discrete objective function with a
neural (analog) hardware having O(N) weights,
in addition to a (digital) RAM of size O(N2) (to
hold the training patterns), instead of a purely
analog hardware having O(N2) weights, at the
expense of an increase in the time complexity;
as discussed in section III. If the suggested
hardware model proves to be feasible then a
major obstacle to the application of the Hopfield
model to real-life optimization problems would
be removed.

An important question that remains to be
answered, is whether the proposed technique
can be extended to the continuous (i.e.
neurons with sigmoid-like transfer functions
and continuous update dynamics [3]) or
annealed (continuous stochastic neurons but
with discrete update dynamics [5]) Hopfield
models. We plan to address this question in the
near future. However, it can be readily said
in general, as long as the continuous
neurons operate in their linear parts or in their
high gain limits the technique presented in this
paper remains applicable.
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