STRUCTURES ON RANDOM ELASTIC SUPPORTS
PART 1: BEAMS
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The lake of the information available on the distribution of the coefficient of subgrade reaction (K) results
significant uncertainty in the true values of deflections, shearing forces, and moments in the analysis of
beams on elastic support. To incorporate this uncertainty into the analysis, the spatial distribution of (K)

for (K) is generated using Monte Carlo method from a normal distribution with specified values for the
expected mean and the standard deviation. The article considers the case of a simply supported beam
carrying a uniformly distributed load. Mean values, standard deviations, and coefficients of variation are
‘developed for deflections, shearing forces, and moments for various sample coefficients of variation in K.
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INTRODUCTION

The relation between probability and confidence is

quite natural, in view of the fact that the motivation for
probabilistic analysis is the lack of information about
the spacial distribution of the supporting medium
beneath structures.
The classical model for a beam on elastic foundation is
described by Eq. (1), as developed by Hetenyi [1]. A
significant uncertainty is born in the value of the
coefficient of subgrade reaction K, which is a
consequence of the variability of most natural soils, and
the inherent limitation in the density of field testing.
The uncertainty in K could be incorporated as a random
function of the space coordinate along the beam. The
problem had thus demarcated, by the random function
solution that describes the skepticism in the deflection
values, as a result of the uncertainty in the values of the
coefficient of subgrade reaction, K.

A simplified version of the above problem was briefly
studied by Bolotin [2]. More extensive investigation
was presented by Krizek and Alonso [3]. Baker, et al
[4-6] have extended those solutions in several ways in
an attempt to provide tools for statistical design.
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Despite of the completeness of the analytical treatment
contained in Baker's work, the analysis is mainly based
on the assumption of the small fluctuation
approximation. With Baker's limited solution, his
analysis can not be considered as comprehensive, even
with his well presented supporting arguments.

THEORETICAL MODEL

We shall start form the governing equation for a beam
rests on elastic support which is

4
Eljxv: +Kw=q 1)

where, EI is the beam flexural rigidity, and w is the
deflection. K, and q are the coefficient od subgrade
reaction and the load, respectively. Referring to the
discussion included in the introductory section, K is a
random function of the space coordinate along the
beam. The boundary conditions that go along with the
above goveming equation for the case of simply
supported beams are

w(0)=w(L)=w"(0)=w"(L)=0 3

The solution to the above mathematical problem is a
random function that describes the uncertainty in the
predicted deflection due to the uncertainty in the spatial
distribution of K.

All variables shown in the above equation, similar to
K, have certain degree of randomness, namely; EI, and
q. In the analysis here, K and q are considered to be
. random variables following the low pass normal
distribution, whilst EI is assumed to be a deterministic
value.

To generate a random nymber from a normal

distribution function with a known expected mean value
and standard deviation, Monte Carlo method is
employed, [9 -11].
The finite difference numerical technique is used to
solve the beam goveming equation. Central difference
approximation is established [12] for the given fourth
derivative. The boundary conditions are treated in the
normal way, where imaginary nodes are created to
impose the existence of the hinged support.

The K coefficient is defined by a mean expected
value EX and standard deviation SD. Those values are
inserted in a simulation routine as such, a uniformly
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distributed random function is generated.
RESULTS

The beam used in the analysis is assumed to have a
constant cross section of unit width and a depth of a
value equals to 0.10 m. The elastic modulus has also
seized a constant value equals to 21.0 MPa. The
coefficient of subgrade reaction K is simulated by two
different expected mean values of 25 MPa (concur to
loose / medium sand), and 300 MPa (concur to dense
sand). Each mean value was assumed to be associated
with various coefficients of sample variation COV
ranging between 0.10 and 0.30 [7,8]. The value of K at
each node is generated via 50 random experimental
simulations, [9,13].

Figures (1) through (3) show the distribution of the
beam mean deflection, standard deviation SD, and
coefficient of variation COV along the beam length, for
various sample coefficients of variation COV in K.
The results prove that the higher is the COV in K, the
more is the deviation in the deflection values from the
mean ones (COV = 0).
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Figure 1. Beam Mean deflection for various sample
coefficients of variation.

In Figure (1), the mean deflection curves for COV =
0.10, and 0.20 are between the two extreme curves;
COV = 0, and 0.30. The interesting note is, the
convergence of the mean values is from the upper
bound, i.e. the higher is the COV in K, the more are
the beam deflection values. In other words, overlooking
the variability in K does not yield conservative
deformation results. The conclusion here, might be
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gstricted to the case under study. It should be noted
hat the problem is not symmetric any more, since K
possesses random values and consequently different
{ ues along the beam length. As such, curves similar
to the ones shown in Figures (2), and (3) are quite
acknowledged.
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" Figure 2. Standard deviation in deflection for various
sample coefficients of variation.
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Figure 3. Coefficient of variation in deflection for
various sample coefficients of variation.

Figures (4) through (9) illustrate the same variables
investigated for the deflection, in the previous Figures.
From Figures (1), (4) and (7) one might be comfort to
base his design on the mean value concept, as
generated from the random variable model. As shown,
the effect of COV in K on the variation of the mean
values of the deflection, and the internal actions is
weak. Nevertheless, the peculiar distribution for the
COV in the shearing forces and the bending moments
is certainly raising doubts in the accuracy of using the
mean values of K, in the design. Such statement shall
be clarified in more details at the end of this section.
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Further to the above discussion, symmetry of the
problem is not preserved due to the un-symmetric shape
of K values along the beam length.
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Figure 4. Mean shearing force for various sample
coefficients of variation.
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Figure 5. Standard Deviation in shearing force for
various sample coefficients of variation.
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Figure 6. Coefficient of variation in shearing force for
various sample coefficients of variation.
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Figure 7. Mean bending moment for various sample
coefficients of variation.
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Figure 8. Standard deviation in bending moment for
various sample coefficients of variation.
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Figure 9. Cocfficient of variation in bending moment
for various sample coefficients of variation.

We have repeated, the previous relationships using a
new mean value of K equals to 300 MN/m>. As
expected, similar pattern of results are existing for all
variables investigated above. Smaller values are
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demonstrated due to the high mean value assigned
K. Since these results do not contribute much to the
conclusion, we have preferred just to report thei
assessments.

Figures (10), (11), and (12) illustrate the probabili
density function for the maximum deflections, shearin
forces, and bending moments. The same function |
obtainable, with the same ease using the computer
at all other solution nodes. K is assumed an expecte
mean value of 25 MN/m3, and various COV of values
0.10, 0.20, and 0.30 are considered. Regardless th
value of COV, the PDF is a non - homogenous norm;
random function, of different mean values, standard
deviation, and coefficient of skewness ( The
central moment / SD> ).
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Figure 10. Probability density function for maximum
deflection.
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e cumulative distribution functions are presented in
e (13) for maximum deflections, and in Figure
14), and Figure (15) for the maximum shearing forces
nd bending moments, respectively.

The confidence of the geotechnical engineer in the
xpected values for design purpose is signified by the
ertical axes, CDFs of the previous mentioned figures.
To shoot for 80% or higher degree of confidence in the
expected maximum deflection value, the less is the
COV, the more is the confidence level. Curves for
COVs of 0.20, and 0.30 show clear deviation from
COV of 0.10 at high degree of confidence. Similar
patterns are observed for the maximum shearing forces,
and bending moments. Those figures are solely enough
to fumish the probabilistic design. Given all related
parameters, and the required degree of confidence, the
above figures shall yield the expected maximum
deflection, shearing force, and bending moment.
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Going further, and assume that the load is also a
random variable, we have selected to let the load
follow a normal distribution, with certain expected
mean value, and standard deviation. Figures (16) to
(18) depict the PDF for the three calculated parameters;
maximum deflection, maximum shearing force, and
maximum bending moment. Results are given for
various COV in the load random function ( 0.0, 0.10,
0.20 ), and we have worked with a COV in K of a
value equals to 0.30. The distribution of the PDFs are
still normal, but non - homogenous with various mean,
standard deviation, - and coefficient of skewness.
Results delivered by Figure (19) manifest the increase
in the degree of confidence in the expected maximum
deflection value, with the decrease in the COV value of
the load.  Surprisingly, the performance of the
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maximum shearing force, and bending moment emerges
differently. As shown, it is not necessary that the
degree of confidence in the expected maximum
straining actions builds with the demotion in the COV
value of the loading ( Figures (20), and (21)).
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conclude that waving the variation in the load
would not guarantee a conservative solution. Or,
same degree of confidence, one should not
0 get conservative design values by overlooking
ation in the load, that certainly shall take place
e beam life time.

wve furnished a stochastical design for a beam
i a random elastic support. The coefficient of
. reaction K is assumed to behave as a
ous low pass normal random function. Beam
and the resulting shearing forces and bending

Alexandria Engineering Journal, Vol. 36, No. 4, July 1997

ABDELMOSHEN: Structures on Random Elastic Supports

moments are shown to behave as non - homogenous
normal random functions with different expected mean
values, standard deviations and coefficient of skewness.
Explicit solutions are given for the distribution of mean
values, standard deviations, and coefficient of variations
for the beam deflections, and straining actions. These
values are sufficient for the definition of the probability
distribution of all concerned variables. Knowledge of
these distributions can be used to derive the
probabilistic design of the beam. It is possible to select
a stiffness value (EI) that ensures with a required
degree of confidence that the deflections, shearing
forces, and moments shall not exceed a criterion value.
It is demonstrated that the use of a random variable
model yields an upper bound on the uncertainty of the
deflection, and not the shearing force or the moment.
In contrary to the common assumption, the random
variable model does not always yield conservative
results.
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