RODUCTION

he full width at half maximum (FWHM) of the
gk in an energy spectrum is a conventional
asure  to the detector energy resolution or,
nerally speaking, the spectrometry system energy
solution. There are a number of potential sources
f fluctuation in the response of a given detector
thich result in broadning of the energy pulses and
nsecuently imperfect energy resolution.
ese include source of random noise within the
etector and instrumentation system, discrete
channels of the multichannel analyser (MCA) which
the common instrument employed for energy
bution measurements and statistical noise
anising from the nature of the measured signal itself.
Under these conditions, the determination of
FWHM of the peaks in the spectrum as well other
spectrum parameters is not accurate and the result
may depend on the method used for calculating
‘these parameters.
Experimentally FWHM is measured at two levels :
with MCA during or after data accumulation, and
- with spectrum analysis programs, usually running on
- acomputer to which the data have been transferred
- from MCA. The MCA usually employs simple
algorithms for calculating spectrum parameters, / 1 /.
More sophisticated algorithms can be used by
programs runing off-line, and which are more time

vords: Energy spectrum, Resolution, Peak width.
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Four different methods for calculating full width at half maximum (FWHM) are presented and
olved by computer generated pseudorandom normal distributions of known parameters. The four
pplied methods employ : the definition of FWHM, the relation between FWHM and the area under
Gaussian, the second moment of the peak, and the least squares fit of the logarithm of the
listribution to a parabola. The dependence of the error in the calculated FWHM on the Gaussian
parameters, amplitude, mean and variance is presented and discussed for each method. A comparison
among the methods shows the superiority in accuracy of the second moment method.

consuming.

The evaluation of the accuracies of some of these
methods is the object of this paper. Four of these
methods are presented, two of which belong to the
simple and fast class, and the two to the other class.

The methods are applied to computer generated
pseudorandom normal distributions of known
parameters,/ 2 /, and the error in the calculated value
of FWHM using each of the four methods is
presented. Since the treatment is carried out with
random distributions, muldaple Gaussians are
processed for every set of parameters and the results
are presented in terms of averages and standard
deviations.

It is also interesting to study the sensitivity of the
FWHM value to the distribution parameters when
the distribution is smooth, ie., replacing the
randomly generated normal distribution with smooth
Gaussian of the same parameters and applying the
same methods to calculate FWHM.

2. PARAMETERS OF CALCULATIONS

A computer program has been written to enable
the generation of the Gaussians and the calculation
of the FWHM for each. The parameters the program
uses for generating a Gaussian are : The type of

B 139



MOBSHER: Calculations of the Full Width at Half Maximum in Energy Spectra

Gaussian [either random (G;) or smooth (G,)], the
mean m, the variance s%, and the number of counts
N in the most probable channel (MPC),/3/.

G, Gaussians represent energy distributions
encountered in common radiation measurements.
They are generated by a subroutine which returns a
set of pseudorandom numbers normally distributed.
For a Gaussian with desired m, s and N, the
subroutine is called to return a total of Ns(2 p)l/2
numbers. To achieve desired distribution these
numbers are then scaled by s and shifted by m, / 2
/8

This distribution differes from some realistic
distributions in the lack of any background counts in
it. The reason for not adding background counts is
the wish to isolate the influence of the FWHM
calculation methods on FWHM accuracy from the
influence of the error introduced by some
background subtraction method.

G, Gaussians are generated by substracting scaled
values of erf(x), (error function), for values of x
which represent, after proper scaling and shifting,
consecutive channels.

The following set of parameters was used :

N : 100, 300, 1000, 3000, 10 000 counts,

s :2,3,4,5, 6, 8, 10 channels,

m : Channel 100 through channel 100.49 every 0.01
channel.

The choice of the ranges for N and s is based on
statistics considerations : For example, 100 counts in
the MPC of a peak are poor statistics while the
accuracy will not change much when increasing the
number of counts in the MPC beyond 10 000
counts.

Channel number 100 has been arbitrarily chosen to
serve as the center channel for the distributions.
Half a channel as the range for the mean suffices to
study the full dependence of FWHM on the mean
because FWHM changes periodically with the mean,
the period being one channel, and because within
each channel there i1s a symmetry in behavior
between the first half and the second half of the
channel.

3. METHODS OF CALCULATIONS

The methods defined below were used to calculate
the FWHM of each of the Gaussians generated :
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Methods F1 : This method relies on the definitic
of FWHM.

Find the MPC of the peak and N, the number

counts in that channel, find the first channel on ti
right and on the left (c, , ¢)) of the MPC who
counts are less than N/2, linearly interpolate ti
counts between channel ¢; and channel ¢, to fir
the channel C; (fractional) for which the counts a
N/2, do the same for channels c, and c__; to find C;
calculate FWHM (F1) , /1/:

FWHM (F1) = Cg-Cp,

Method F2 : The method uses the relation betwee
the definite integral of a Gaussian, its variance ar
its amplitude, / 4 /, calculate the total number
counts of the peak (T), find N, calculate FWHI
(F2):

FWHM (F2) = (81n 2/2p)'? T/N

Mehod F3 This method relies on tt
second-moment calculation of a distribution, and th
identity of that moment and s for a Gaussian :
Compute T and the two sums :

T, = i GG),
T, = £ i% G,

Over all the channels 1 of the Gaussian G, calculat
the measured mean m_, the measured standar

deviation ¢, and FWHM(F3), /5 /:
Um = Tl /T

o, = (Tr/T _ umZ)IIZ
FWHM(F3) = 81n2)!2 4

Method F4 : Uses the least-squares method to f
the Gaussian to a parabola often taking the natur:
logarithm of the Gaussian values.

The function P to which the Gaussian, after takin
the natural logarithm is to be fitted 1s, / 3 /:

P-ai2+bi+c,

1 being the channel number. The parabol
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- coefficients are related to the Gaussian parameters
by the following relations :

02 = -1/ (Za)
Uy = -b/(2a)
In (N, = c-b*/(4a)

4. RESULTS AND DISCUSSION

~ The dependence of the relative error in the
~ ‘calculated FWHM on the parameters of the smooth
Gaussians (G,) is shown in Figures (1-6). The
relative error r (in percent) is defined as, /4 /:

r = 100 (FWHM,_ /@Bl 2)%2-0) /0

Where o 1s the true standard deviation of the G,

Gaussian, and FWHM_ is the result of calculating
r.the FWHM value by each of the four methods.

. Generally, for all the methods, the relative error
“decreases with increasing N. With methods F1 and
- F2 r exhibits a monotonous dependence on the true

mean, this dependence decreases with increasing s

and with decreasing N. Also the relative error with

these methods is mostly positive, 1.e., the calculated
. FWHM value is larger than its true value.

Method F4 shows a non regular behavior, with sharp
changes in the relative error as a function of the true
mean. Also, the relative error is mostly negative,
which means that the calculated FWHM is smaller
than its true value.

Of all methods, F3 exhibits the least sensitivity to

1 all the parameters discussed.

The results for the randomly generated Gaussians
1 (Gy) are presented in this way : For each of the

_Vvalues of s and N the relative error in FWHM fi50

“Gaussians  with different true p’s are grouped
vtogether and the average relative error _(rav) and

standard deviation  (S) about that average are
calculated and shown in Figs 7-10 . This way of
presentation is used to average out the different
fluctuations appeared among different Gaussians.
Comparison among these figures shows that r,, is
~ always positive and the smallest valies are achieved
by F3. The third method has also the least s and the
least sensitivity of ¢ and r,, to s, this is the most
accurate method.
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Figure 1. Relative error Vs true mean for a smooth
(G,) Gaussian with N = 100 and ¢ = 5.
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Figure 2. Relative error Vs true mean for a smooth
(G,) Gaussian with N = 100 and ¢ = 10.
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Figure 3. Relative error Vs true mean for a smooth
(G,) Gaussian with N = 100 and 0 = 5.
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Figure 4. Relative error Vs true mean for a smooth : :
(G,) Gaussian with N = 1000 and ¢ = 10. random. (Gy) Gaussians with N = 1000.
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Figure 6. Relative error Vs true mean for a smooth re‘lative error V true o for 50 random (G,) Gaussians
(G,) Gaussian with N = 10000 and ¢ = 10. with N =10000,
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ﬁ tive error V true ¢ for 50 random (G,) Gaussians,
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5. CONCLUSIONS

All four methods for calculating FWHM discussed
in this paper yield accuracies of 10 % or better
depending on the distribution parameters.

In applications where this degree of accuracy is
sufficient, each one of these methods can be used.
- When better accuracy is desired, the recommended
method is F3, the second moment of the peak
method which is the most accurate of all methods
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When computing resources are limited, factors
concerning the dependence of the accuracy on the
parameters of the distribution must be taken into
account before selecting the method to be
employed. If in an application a constant "working
point" in terms of N and s can be maintained, a very
low error in FWHM can be achieved even with
methods F1 and F2.

When the measurement system is to be used with
distributions of diverse characteristics, the method
that exhibits the least dependence on the parameters
of the distributions should be employed, the F3
method.
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