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Many applications of the theory of open cylindrical shells have been demonstrated in various
literature. However, these applications have already been established in some simple problems of
ship structures by generating a circular plate to a flat one. The purpose of this paper is to show the
potential of the theory of open cylindrical shells in demonstrating further complex applications of this
~ generated theory to ship structures. In this paper, this theory is generalized to solve complicated
problems of ship structures such as a box barge , a circular bilge plate and a midship section of a
‘small boat. A computer program is developed to calculate the stresses, moments and resulting
 deflections in the structural members. The results are compared with those of other theoretical
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1. INTRODUCTION

The purpose of this paper is to demonstrate the
high capability of the open cylindrical shell theory to
analyze different components of ship structures.

The classical analysis of plate structures subjected
to in-plane and lateral loads may be performed with
two different methods. In the first method of
analysis, an equilibrium equation is generated as a
function of in-plane forces and transverse moments.
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While in the second method, the membrane stresses
are superimposed to the flexural stresses that have
developed due to pure bending of plates.

The first method of analysis has been fully
explained by Flugge, the calculations are
straightforward and are discussed in detail in [1].
The second method of analysis, which takes into
account membrane and out-of plane stresses, leads to
two separate compatibility equations. The solutions
of these equations have to satisfy the prescribed
boundary conditions. The solution procedure of the
second method is similar to that applied in the
theory of open cylindrical shells. The difference
being that in the case of shells, the conditions of
equilibrium of the shell element vyield an
intermediary equation to be established between the
flexural and membrane conditions. As a result, the
two separate equations of the plate theory defining
such conditions are reduced to a single one called
the shell theory compatibility equation. The shell
compatibility equation is however much more
amenable to the prescribed boundary conditions.
Solving the compatibility equation, stresses and
forces acting on the shell element may be
determined.

In this paper, the shell theory is degenerated and
applied to flat plate structures. Then the theory is
generalized to solve complicated problems of ship
structures such as a box barge , a circular bilge plate
and a midship section of a small boat. A computer
program 1s developed to calculate the stresses,
moments and resulting deflections in the structural
members. The results of analysis are compared with
other theoretical methods. The results have shown
good agreement with those methods.

2. THE THEORY OF OPEN CYLINDRICAL
SHELLS

2.1 Assumptions and Description of Shell Element

In this section, the assumptions and the description
of the shell element are presented. As mentioned
before, the theory of circular cylindrical shells is
applied to thin shells with small displacement. The
following assumptions are taken into account when
solving the compatibility equations.

1. Points initially lying normal . to the middle
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surface of the shell remain normal when the

shell is bent.
2. The normal stresses in the transverse direction to

the shell are neglected.

Figure (1) illustrates a typical section of a shell of
thickness 2t, the middle surface of radius R is
circular in the transverse direction and straight in the
longitudinal direction.

Figure 1. Description of shell element.
2.2 Forces and Moments Acting on Shell Element

The forces and moments acting on the shell
element are assumed as shown in Figures (2a), (2b)
and (2c). The forces and moments per unit length
may be explicitly defined as follows,

the forces on transverse and longitudinal
sections of the shell respectively ,

Nyg Ngx the shear forces acting on the surface of
the shell.

N, N,

Qp Q¢ the transverse shear forces acting on
transverse and longitudinal sections

M, the transverse moment acting along the
longitudinal section of the shell
element.
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the longitudinal moment acting along the
; transverse section of the shell element.
p M ox the torsional moments acting on the
transverse and longitudinal sections,
respectively.

displacements u,v,w as shown in Figure (2¢)
allel to the coordinate axes x,y (=R¢), and
tively. X, Y and Z are the external applied
cting on the shell element and are defined as
s per unit area of the shell surface. In the

ysis, the shell element will be assumed to be
imply supported at its ends.

3 The 'Shell Compatibility Equation

~ The shell compatibility equation can be obtained
by introducing the equilibium equations,
- stress-strain  relationships and strain-displaccment
3 ‘relationships as a function of the displacement ,

in - the z direction [2]. This equation may be
exprﬁsscd as follows,
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Figure 2. Positive forces, moments and displacements.
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By solving this equation for w, the stress resultants
and displacements can be determined.

A complete solution of Eq.(1) is obtained by
combining the particular integral for given surface
loads X,Y and Z with the complementary function.
The complementary function is the solution of the
equation with the right-hand side equated to zero.
The second part is the solution of the particular
integral i.e. particular solution of the equation as a
whole.

Firstly, the complementary function may be
expressed by equating the right-hand side of Eq.(1)
to zero as follows,

Rs(aaszzadsz)‘wms(l )%%Y-o ®
X

The deflection function w may be expressed as
follows,

w=A e™® cos kx 3)
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where, k = ix
L

The solution of the complementary function when
the ends of the shell are simply supported is given
in [3].

Secondly, the particular integral equation depends
on the nature of the surface and loads. To obtain the
solution to this equation for various loading
conditions, [2] and [3] may be referred to.

2.4 Degeneration of Flat plate from Cylindrical
Surface

The analysis of flat plates using the classical plate
theory considers two discrete stress systems. The
first, in which only moments and their associated
cross shear are assumed to act is known as the
bending theory. The second, in which only in-plane
or membrane stresses are assumed to act 1s known as
the membrane theory. These two systems lead to
two sets of stress equilibrium equations which are
not interlinked and which have to be solved
independently.

The equations of equilibrium for cylindrical shells
are however almost identical to those for plates
except that the curvature allows the bending and
membrane equations to be linked. Now if the
cylindrical surface is degenerated into a flat surface,
the analysis previously developed for cylindrical
shells may then be used to analyze flat plates.

The cylindrical surface may be caused to
degenerate into a flat surface by reducing the half
angle ¢ and by suitably increasing the value of its
radius so that the required breadth of the flat surface
is maintained. In order to establish the validity of
using the circular cylindrical shell theory for the
analysis of flat plates the following conditions must
be fulfilled ,

1. The degenerated open cylindrical surface is
considered flat for all practical cases.

2. The numerical solutions for plate problems using
classical flat plate theory agree with the
cylindrical shell degenerate theory.
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By examining Figure (3), it is clear that a flat pla
may be generated from a cylindrical one by reducin
the half angle ¢ to a very small value. The sp
width may be adjusted as desired by suitably
increasing the radius.

2Rsin ¢
— —

LT

R(1-cos¢)

Figure 3. Generation of flat surface.
rise of arc _ R(l -cosd) _ 1-cosd
span width 2Rsin¢ 2sing

Flatness ratio =

When the angle ¢ is taken 1° for instance, the
above ratio yields 1/175 and it happens that the
resulting element may be considered flat for most
practical cases [4].

With a half angle of 1° ,the required radius of a
degenerate cylindrical surface which is to be
equivalent to a flat surface of width Ly will be given

by,
R = Ly / 2sin(1°)

The degenerate theory which was introduced by
Gibson [4] implies that the half angle must be equal
to 1°, but Salem [3] obtained limiting parameters
for generating flat surfaces from cylindrical ones as
shown in Table (1).

Alexandria Engineering Journal, Vol. 36, No. 4, July 1997



SALEM, LEHETA, ABDEL-NASSER and ELHEWI: New Applications of Shell Theory to Ship Structures

Table. 1 Limiting Values of Half Angles and Ratio of Span Width to Rise at Center of Arc.

Span Width
Boundary Aspect  Ratio Half Angle ¢ Rise of Arc
Condition B=L,/L, ( degree)
Transverse  edges
simply supported & I <B<4 1/4° 920
longitudinal  ones
built-in.
Simply I<p<4 1/2° 460
supported 2<B<4 2° s
edges.

3. STRESS ANALYSIS OF
MULTI-CYLINDRICAL SHELL

Ship structural units mainly consist of two types.
These are,

1. Panels connected directly with each other such as
the stringer plate with the sheer strake, double
bottom, and the corrugated bulkheads.

2. Panels between edge beams having longlcudmal
stiffeners and girders.

The theory of circular cylindrical shells can be used
efficiently in the analysis of such structures. It is the
purpose of this paper to illustrate the use of this
theory in solving structural problems of the first
type. By considering the first type of structures,
multi generated flat plates may be constituted. The
versatility of using the shell theory in the analysis of
such structures may be shown to supersede other
methods. However, the shell edge conditions have
to be generated. This will be explained in the next
section.

3.1 General Shell Edge Condition

Considering Figure (4), the edges of the rth shell
may be defined with reference to the center line,
one edge at +¢_and one at -¢.. . The displacement
of the shell edges will be u,v,w and 6. In order to
have a common reference direction for these sets of
displacements it is convenient to refer them to fixed
axes X;,y;,z; as shown in Figure (4) in which z; is
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vertical, y: is horizontal and X is parallel to the axis
of rotation of the cylindrical surface.

The position of the transverse section may then be
defined by the inclination angle ¢ of its center line
to the vertical as shown in Figure (4). The boundary
conditions for the two outer edges of the structures
at +¢; and -¢p; are accounted for by providing two
corresponding sets of four shell equations.
Continuity of the structure is dependent on the
equality of displacements , moments and forces at
each junction between two shell components, [2]
and [3].

The continuity of displacements at the junction
between shell r and shell r+1 are as follows,

uj)r = u:i)r+1
vj?r o vj?l‘-fl
WJ)r = wj)r+1
ej)r - 0j)r+1 (4)

The continuity of moments and forces at the same
junction are as follows,

MqB])r = M¢i)r+1
Vj)r = Vj) r+1
HJ)r = Hj)r+1 ©)
qubi)r qu&i)nl
where

Vj = resultant forces in the vertical direction.
Hj = resultant forces in the horizontal direction.
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Figure 4. Equilibrium between two shells.

Equations (4) and (5) are sufficient to ensure the
continuity for the junction between shells r and r+1.
In general for structures having N shell components
there will be 8N arbitrary constants and in order to
solve the problem uniquely a number of 8N
simultaneous equations involving these constants
must be sought. As there are 8N-1 junctions then
continuity of displacements, moments and forces
provides 8N-8 equations. A further two sets of four
equations (i.e. eight equations) will also be provided
at the outer edges of the structure. In all , the total
number of equations available will be 8N equations.

The last preceding method has been expounded in
a computer program , this program is so generalized
that mult-plate, shell panels may take any
configuration desired with individual panels having
any thickness and being subjected to any arbitary
normal pressure.

4. CASES OF STUDY

After the presentation of the shell theory, the
theory will be applied to some cases of ship
structures. A computer program was developed to
estimate stress resultants and deflections in
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complicated structural members. Also the results
obtained by using such a theory will be compared
with those obtained by using other methods. In the
following cases, the modulus of elasticity and
Poisson’s ratio are 2.1 x 107 N/ecm? and 03
respectively. These cases are as follows,

1- box barge

2-circular bilge plate.

3- study of the effect on strength of deck camber.
4- a deck with discontinous distributed load .

5- midship section for small boat

It must be noted here, that in order to illustrate
the versatility of the shell theory, the following
examples are considered without stiffeners and to
compensate for the effect of the stiffeners on the
strength, the plating is taken rather thick and the

|

deck loads are kept small so that the conceived

results will be realistic.
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¢ 5. Configuration and loading condition of
arge.
Box Barge

he hull of a ship 1s considered as a box girder,
1 the longitudinal and transverse bulkheads
ding it into compartments or multi-cells. The
I theory will be applied to a simply supported
¢ barge of a rectangular cross section as shown in
ure (5) in which the loading conditions are given.
e box barge particulars are as follows,

ngth between two transverse bulkheads = 5 m
rectangular section = 5x 2 m?
deck plate =25 mm
side shell plating= 25 mm above load water line.

- bottom plate = 30 mm below load water line.
- hydrostatic pressure = 1.025 N/cm?

'~ This box girder will be considered as a multi shell
‘problem. The analysis of the box girder as a
- multi-shell problem is shown in Figure (6) in which
the pitch angles are given. Figure (7) shows
~ distribution of transverse bending moment along the
transverse direction using both the shell theory and
 the slope deflection method. It is clear that results
obtained by using both methods are in good
agreement. ¢

4.2 Circular Bilge Plate

A typical bilge structure with the particulars as
given below has been analysed using the shell
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theory. The boundary conditions in this case are
built-in for the sides and simply supported for the
ends as shown in Figure (8). The particulars of the 4
bilge plate are as follows,

- bilge radius = 320 cm
- longitudinal span = 500 cm
- half angle =45°
sheu(®
B,50
1 5
$23-90
}-3 -,— -— Shell @
S
i B0 shent ®
I Pizo
shell ®

Figure 6. Analysis of box barge as a multi shell
problem.

Nemfem
. e

+8x10 ..{
Shell theory

e s e e = SiOpe deflection

Nemfem

Figure 7. Distribution of transverse bending
moment along transverse direction.
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Figure 10. Variation of radial deflection alo
transverse direction.

Figure §. Typical ship bilge .plating.

The hydrostatic pressure is assumed to be radially & ]
uniform and of value equal to 2N/cm?. Here, small ? ©.00
shell elements may be used for the bilge plate IS *
model as compared with other methods. Figures (9) E
and (10) show the variation of radial deflection along -t
‘longitudinal and transverse directions, while Figures g
(11) and (12) show the vanation of transverse 25 |
bending moment along longitudinal and transverse
directions. fa " . i Shsa
® o @2 @ 04 ®
* Figure 11. Vanation of transverse bending momen
T along longitudinal direction.
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Figure 9. Variation of radial deflection along ' § 2
longitudinal direction. >
g 00 v &
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Figure 12. Variation of transverse bending moment
along transverse direction.
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¢ effect on strength of deck camber

distributed load along its length and
longitudinal edge is considered as
ire (13). In this case, an open circular
is applied. The particular
e deck are taken as follows,

= 600cm
= 25mm
= 0.02

stributed load = 0.5N / cm?

q Njom’

1650 R R G S S O |

‘_\I\t buitt in
t t

calculated results are obtained for two cases ,

en the deck is flat with width 500 cm .

the deck is a cylindrical surface with radius
30 cm ; the value of this radius is calculated
r a camber ratio as given above. Figures (14)
d (15) show the distribution of radial deflection
g longitudinal and transverse directions, while
res (16) and (17) show the distribution of
transverse bending moment.
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Figure 15. Variation of radial deflection along

transverse direction.
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Figure 16. Variation of transverse bending moment
along longitudinal direction.
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Figure 17. Variation of transverse bending moment
along transverse direction.

4.4 Deck with Discontinuous Load

The considered deck shown in Figure (18) is
exposed to discontinuous loading in the transverse
direction. The problem may be solved by considering
that the complete deck consists of three bays of
cylindrical shell as shown in the figure. Provided
that suitable values of pitch angle for three bays are
selected , it is easy to see from the geometry of the
cross section that shell (1) must have an angle ¢,
of 1.52° and a pitch angle of 3.052°, the distributed
foad being 0.5 N/cmz. In the case of shell (2), @,
must be 1.526° and the pitch angle equals zero,
with no load. Finally, shell (3) must have 63 =
1.526° , a pitch angle of -3.052° and a load equal to
0.5 N/ cm?. The transverse bending moment is
plotted along the transverse direction as shown in
Figure (19).
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shell Q@
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Figure 18. Deck with discontinous distributed load.
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Figure 19. Distribution of transverse bending
moment along transverse direction.

4.5 Midship Section of Small boat

A further application of the shell theory has been
used to analyse a midship section for a small boat by
considering it as a muldi shell problem. The midship
section configuration is shown in Figure (20). The
loading and boundary conditions are shown in the
same figure. Figure (21) shows the distribution of
transverse bending moment along the transverse
direction.
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5. CONCLUSIONS

After the presentation of the shell theory and how
it may be applied to some ship structures, it is seen
that it is easier in application from other methods
due to the following advantages:
¢ The governing equation of compatibility is much

more responsive to solutions (in respect to
prescribed boundary conditions), than the two
compatibility equations of the plate theory.

e It is applicable to any geometrical boundary
conditions and material variation.

® Itis easier to be programmed where only a small
number of input data is required.

Considering the above advantages, the following
may be concluded,

1. By generating a flat surface from a cylindrical
one, it is possible to use the shell theory in the
analysis of flat plates.

2. The accuracy of results attained for plates under
lateral loads is equal to that attained by the
classical bending theory of plates.

3. The shell theory may be used for the analysis of
plate panels with the advantage that such panels
may be either flat or circular cylindrical.

4. A further application of shell theory would be the
analysis of multi-shells when more than two
shells are connected at one joint. Also by
developing the orthotropic shell theory,
orthogonally stiffened plate problems can be
solved with remarkable ease as compared with
other methods.
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