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BSTRACT

* This' paper introduces a theoretical analysis of beams with composite sections. The considered
. composite section consists of two materials bonded together by a flexible bond layer. The top profile
~  material has a flexural rigidity and the bottom one has an axial resistance only. Relative shear
"~ deformation of the bond material is considered. The differential equations of the proposed model
" are developed and then solved theoretically. T'wo methods of solution have been used. These are
the transport matrix method and the finite element method. The solution methods are extended in
order to solve frames as well as beams. Sandwich beams with top profiled face and reinforced
concrete beams strengthened by epoxy-bonded steel plates are two types of examples which have
been used to verificate the theoretical model. Comparisons between the theoretical model and the
available experimental results show good agreement. Also, design curves of sandwich beams are given
-~ for-different cases of loading and different boundary conditions.

E{ modulus of elasticity of top element Q, shear force of bottom element
2 “modulus of elasticity of bottom element q shear force of bond material
second moment of area of top element N  normal force
cross-section area of bottom element p. distributed peeling force (normal force of bond
a distance between centres lines of top and material)
' bottom elements - \% state vector matrix
g bond width T  transport matrix
t - thickness of bond material I unit matrix
) applied uniform load P load vector matrix
W deflection of beam element P,  point matrix
p  angle of rotation fiue to bending k lodal stiffhess matrix
(. net angle of rotation i k  global stiffness matrix
relaqve,:d.lsplaccment due to betndmg T, transformation matrix
relative displacement due to acting normal force T transpose of the transformation matrix
on both elements - . .
| total relative displacement between top and A local deformation matrix
~ bottom elements of composite beam é global deformation matrix
G. shear modulus of bond material F  local force matrix
M bending moment of beam section F global force matrix
M; bending moment of top element
M, bending-moment of bottom element INTRODUCTION
) shear force of beam section
Q; shear force of top element ; ; . Composite sections can combine the advantages of
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lightness, stiffness, strength and, also, excellent
thermal properties. Examples are: a- sandwich panel
or beam composed of metal faces of steel or
aluminum and a rigid foam core, and b- aluminum
alloy reinforced by adhesive bonding of carbon
fiber/fepoxy composites. These sections may have
different uses in the aircraft industry and military or
civil structures.

On the other hand, existing concrete structures
may, for a variety of reasons, be found to be
unsatisfactory under service loading. This could
manifest itself by poor performance in the form of
excessive deflections or cracking. One method which
has considerable potential in the strengthening field
is that which involves the bounding of steel plates to
the surfaces of the members to be strengthened.
Figure (1) shows typical cross-sections of the
mentioned examples of composite Structures.

\Mfo_mm

a- panet with flat faces

b- panel with lightly profiled faces

¢~ panel with top profiled face

* Typical Cross-Sections of
Sandwich Panels

.

aluminium beam

CFRP Plate M plate

Typical Cross-Section
of Aluminium Alloy Beams

Typical Cross-Section
of Reinforced Concrete
Reinforced by Adhesive

Bonding of Carbon Fiber/
Composites

Beams Strengthened by

Epoxy-bonded steel
Plates

Figure 1.
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The bending behavior of a general sandwich beam
delaminated (debonded) at one of the skin-core
interfaces with transversely flexible core has bees
studied by many researchers such as Y. Frostig [1
His analysis considered a two-dimensional
formulation for the core, in longitudinal and
transverse directions, combined with a beam theo
formulation for the skins. The effects of the vertica
flexibility of the core, in the undelaminated and
delaminated regions on the behavior are considered.

O. Vilnay [2], studied the behavior of aluminum
alloy struts and beams reinforced by CFRP. He
investigated the failure due to cracking of the
adhesive bond, in addition to the shear and the
peeling stress in the aluminum beams reinforced by
CFRP .

T.V. Parry and R.S. Wrenski [3] carried out several
tests on aluminum alloy beams selectively reinforced
on one or both surfaces with uniaxially aligned
continuous CFRP.

F.J.H. Tutt, Bsc. and Mimeehe., [4] examined
aluminum flanges of the deck unit of military
bridges. They designed and manufactured four lighi
alloy beam specimens in order to test the behavior
of the adhesive and the selective reinforcement.

For the strengthening of concrete structures by
bonding steel plates to concrete surfaces, R.Jones,
R.N. Swamy, and A. Charif., [5] studied the problem
of using anchors at the ends of steel plates which is
glued to the tensile faces of reinforced concrete
beams. They presented a simple theoretical study o
the force systems at the plate, glue and the glued
concrete interfaces. They discussed the efficiency of
the different anchorage details, and they showed that
the use of additional glued anchor plates gives the
best results. These plates overcome the. problem of
anchorage failure and enable the full theoretical
flexural strength to be achieved, together with
ducuale behavior.

T.M. Robertsm [6] presented a simple
approximate procedure for predicting the shear and
normal stress concentrations in the adhesive layer of
reinforced concrete beams strengthened by glued
steel plates.

This work presents the theoretical analysis of the
composite beams. The composite sections consist of
two materials bonded together by a flexible bond
layer. The top profile element has a flexural rigidity
and the bottom profile element has an axial



resistance only. The theoretical model and the
governing differential equations are presented.
Two methods of solution have been approached
considering the relative shear deformation of the
bond material. These methods are the transport
matrix method and the finite element method.
Verification of the theoretical model is performed
Solutions of sandwich beams with top profiled face
and reinforced concrete beams strengthened by
- epoxy-bonded steel plates are presented and
compared with the available experimental results.
The comparisons show a good agreement between
the theoretical predictions and the experimental
results.

Design curves of sandwich beams are given for
different cases of loading and different boundary
conditions.

EQUILIBRIUM EQUATIONS:

Figure (2) shows a differential element of a
composite beam segment of length dx with the
internal force acting on it together with the external
distributed load p. The following major assumptions
are considered:

1- The matenals of the elements are elastic-
homogeneous and isotropic.

2- The strain in the top element is due to bending
while the strain in the bottom element is due to

axial force only.
3- Peeling force (normal force) of the bond element

is negligible.

by the top element only.
5- First order theory is considered.

The total shearing force Q and bending moment M
are equal to:

Q=0 (1)
M=M, +Na @)

in which (a) is the distance between the center lines
of the top and the bottom elements. Due to the
beam theory, the relation between the total moment
and the external distributed load is given by
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4- The shear resistance to external loads is provided
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M
=- 3)
dx? >

The relation between the moment and the
curvature can be expressed as: ;

M, =-E, I, %:i @

in which E, is the modulus of elasticity of the top
element, I, is the second moment of area of the top
element and ¢ is the angle of rotation of the
composite beam due to bending which is given by:

dw
- 5
¢ = (5)

where w is the deflection.

Relative shear deformations between the top and
bottom elements are shown in Figure (3) where the
total relative displacement § can be expressed as:

5 = b + Oy 6)

where 8 is the relative displacement due to bending
and §y; is the relative displacement due to the acting
normal force on both elements.

From Figure (3):

5 = a. ¢ @
and
g = ®)
a =

where 7 is the net angle of rotation of the composite
section.

Two times differentiation of equations (6) and (7)
gives:

d2s _d*s; d?s,
dx? - dx? * ds?
d2s, _, 4%

dx? dx?

)

(10
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Figure 2. Differential element of the composite beam.
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Figure 3. Relative displacement between top and
bottom elements.

The strain due to the axial force can be expressed
as:

ds

N
EA,

in which E,. A, are the modulus of elasticity and the

(11)

cross-section area of the bottom e¢lement,
respectively.
Differentiation of equation (11) yields:
d*8y -1 dN (12)
i BA, &

Substituting equations (10) and (12) into equation (9)
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Considering the equilibrium of the top or the
bottom element in the horizontal direction, then the
shear force of the bond element is:

dN
= —=G".8 14)
9= 5 (
in which G’ = G—tg where G is the shear modulus

of the bond matenal, g and t are the bond element
width and thickness, respectively.

Substituting equations (5) and (14) into equation
(13), then

(1)

6” ‘_w26_ aW”,

where

’

2

“ T EaA,

Differentiating equation (2) twice, and equations
(9) and (10) once, and substituting in each other
yields:

d’s, _d%s e d*w

; (16)
dx dx®  ax*
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Substituting equations (3), (4) and (16) using the
differentiation of equation (12) into the second
differentiation of (2)

then
2
o
wiV. Zty=P (17)
a o,
where
2
2 S Bh,
E ]I +32E2A2
and

a,=E; 1, +a%E; A,

Equations (15) and (17) are coupled differential
equations.

By differentiations -and substituting result the two
uncoupled differential ones, equations (18) and (19)

8" - 02§ = ay (18)
where
2
Q% = ~ and a3 = il 'L aiind
1-a; a,(1 -ab
where
02
Qy = pQ

The solution of equations (18 and 19) gives

w, = A;sin h Ox + A, cosh Ix+A; x3

# A4x2 + Agx + Ag+ 24p x* (o)

5= A1 28 oshax +Az-—-—sth —A,G‘ Ry )
a o

dl 1 29
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where A; to A4 are coefficients which depend on the
boundary conditions.

Other deformations and forces equations of the
beam can be obtained according to their definitions.

METHODS OF ANALYSIS

Transport Matrix Method

In the transport matrix method, the beam is
divided into a number of elements which are
connected together at discrete joints. Then, the
transport matrices are formulated for these elements.
Besides, the solution is extended to handle portal
frames by introducing point matrices at frame
corners. Also in case of concentrated deformations or
forces at any joint, a corresponding point matrix is
used to overcome this problem.

The deformations and forces at any section at
distance x from the starting point, x =0, can be

" obtained as a function of the deformations and forces

at that point.

Solving equations (20,21) for x=0 and by
rearranging, the developed equations are written in
a matrix form as:

{Vid = [T] {V,} (22)

V. State vector represents the deformations and
forces at x =0

=<W,% 60 Mo (Ml)o Qo 1.0 >7x1

V.. State vector represents the deformations and
forces at any section at distance x from the
starting point.

=< Wy 7¥x 6x Mx (Ml)x Qx 1.0 >7x1

T: Transport matrix which relates the vector V, to
the vector V.
it is given in Appendix A.

Finite Element Method
The second method of solution is the finite

element method which has become a powerful tool
of analyzing a wide range of problems. In the
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present analysis, the element stiffness matnx, k, is
the derived directly from the transport matrix
obtained in the previous sub section. Then the
global stiffness matrix and its solution are generated
following the standard steps of the finite element

method.

Equations (22) giving the deformations and forces
(except the axial ones) for a beam element of length
x, Figure (4) can be rearranged to take the form:

A.F=B.A (23)
where

F = local end forces of the element at nodes 1
and 2

- <F >
= <O M; My); Q; M; My), >4
A = local end deformations of the element at
nodes 1 and 2

- <AA,>
= < WY1 6 Wy ¥, 0556y

Postmultiplying equation (23) by Al yields:

F=A"B.A (24)
or
F=k.A (25)
Then
k=A"'.B (26)

where k is the element stiffness matrix of dimension
6x6 relating end forces to end displacements in local
coordinates.

Adding the axial stiffness, then

{§}3x1 =[E]an {K}le 27)

. where

{ﬁ}m =<N,Q;M; Mp,N,Q,M, M)),> (28)
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Figure 4. Plane compositg beam element.

in which N, N, are the axial forces and uy, u,
the axial displacements of the element at node 1
respectively.

The element stiffness matrix [ilm is given 1|
Appendix B.

VERIFICATION OF THE MODEL

Two computer programs have been developed to
implement both Transport Matrix Method and
Finite Element Method described in the previous
section.

To demonstrate the accuracy and efficiency of the
proposed theoretical model, a comparison is made
with some experimental results concerning different
types of composite elements. For sandwich beams a
comparison is made with the tests performed by
Gehard Schuler [7]. On the other hand, reinforced
concrete beams strengthened by epoxy-bonded steel
plates is compared with the test performed by R.N.
Swamy, R. Jones and ].W. Bloxham [8]. A good
agreement between theoretical and experimental
results is observed.

Example 1

In the experiments performed by Gehard Schuler
ten sandwich beam systems were tested. All beams
have the same cross section given in Figure (5). The
cross sections consists of two relatively thin steel
faces and a foamed plastic core, the top face has a

Alexandria Engineering Journal, Vol. 36, No. 3, May 1997



flexural ngidity and the bottom face is lightly
profiled. The elastic modulus of steel used in faces
is 2.1x10° N/mm?. Other geometric values were as
follows: ‘

Thickness of upper steel face = 0.58mm,a12 = (0.848
Thickness of lower steel face= O.Smm,ozg = 1160414
KN. cm*“.

Core thickness (a) = 52 mm,E,A, = 36387 KN.

166

~

600 mm

Figure 5. Cross section of sandwich beams.

The span of the beam system L ranged from 1000
mm to 1500 mm. To ensure the system continuity
the beams were extended over the supports with a

EL-HIFNAWY, DIWAN and ZAGHLOUL.: Theoretical Model for Composite Beams With a Flexible Bond Layer

variable length yL, where 5 varied from 0.049 to

"0.333. For each of the beam systems several '

elements were tested. The researcher determined °
the factor w for each beam system, which depends
on the flexibility of the core together with the
rigidity of other system parts, using the experimental
esults and his own theoretical equations. The first
five sandwich beam system were loaded by a -
concentrated load at the midspan while the other
five beam systems were loaded at the third points of
the span with two concentrated loads. The loading
was in the elastic range with total loads not
exceeding 3KN. The midspan deflecion w was
considered the average value of the results obtained
from the several tested elements for each loading
system. Table (1) and (2) show the experimental
results for w as well as the comparison between the
theoretical values of the central deflection
determined using the present theoretical model and
those related to Schular experimental work. The
percentage difference between the two results have
a maximum value of 1.68% for the first group of
beam systems and 0.49% for the second group. A
very good agreement is observed.

Table 1. Comparison of the central deflection w for first group of beam systems.

Beam L(mm) ] Experimental | Central deflection of the beam (mm)
Number value of
w(1/cm) Experimental | Present |Percentage
results theoretical | relative

model | difference

1 1500 0.055 . 0.0126 4.812 4.893 1.68%

2 1250 0.166 0.0134 - 3.143 3.139 0.13%

3 1000 0.333 0.0138 1.879 1.882 0.16%

4 1250 0.055 0.0123 3.362 3.371 0.27%

5 1000 0.049 0.0118 2.138 2.114 1.12%

Alexandria Engineering Journal, Vol. 36, No. 3, May 1997
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Table 2. Comparison of the central deflection w for the second group of beam systems.

Beam | L(mm) 1 Experimental ‘Central deflection of the beam (mm)
Number value of -
i w(1/cm) Experimental Present Percentage
results theoretical relative -
model difference

1 1500 | 0.055 0.0130 3.977 3.982 0.13%

2 1250 | 0.166 0.0135 2.608 2.616 0.31%

3 1000 | 0.333 0.0148 1.500 1.496 0.27%

4 1250 | 0.055 0.0131 2.672 2.685 0.49%

5 1000 | 0.049 0.0127 1.687 1.690 0.18%

Example 2

In the tests performed by R.N. Swamy, R. Jones diameter links at 75 mm centre to centre. The
and J.W.Bloxham [8] nine beams were analyzed. All beams were simply supported over a span of 2300
the beams were 155 x 255 mm in cross section and mm and loaded at the third points. the details of the
2500 mm long. The beams were reinforced with 3 beams are shown in Figure (6) and the details of the
no. 20 mm diameter bars at an effective depth of  main variables in the tests are given in Table (3).
220 mm. The shear spans were provided with 6mm

Table 3. Details of the Main Variables of the Test [8].

Beam 0 1 2 3 4 5 6 7 8 9
Number
Glue - 1:5 1.5 1.5 3.0 3.0 3.0 6.0 6.0 6.0
thickness(mm)
Plate thickness - 1.5 3.0 6.0 1.5 3.0 6.0 1.5 3.0 6.0
(mm)
Load at third 100 104 110 131 111 126 130 111 123 134
points (KN)
0 M |
. ‘ IZSS
— L
o | VAN = = A
-
125
- 767 e 766 i 767 -
| 2300mm
= 1

Figure 6. Details of test beams [8]:
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Table (4) shows comparisons between theoretical
and experimental values of the central deflection of
the beam. Swamy used the deflection of unplated
beam (Beam No.o) loaded by two concentrated loads
each of 100 KN as a reference (4.6mm). Then, for all
other tests he forced the central deflection to take
the same value of 4.6mm and estimated the

corresponding loads.

In the present theoretical model, the flexural
rigidity of the reinforced concrete element is taken
corresponding to the experimental work for the
unplated beam. This value is kept constant for all
other beams. The considered elastic modulus of the
epoxy resin is an average value at medium strain.

... Table 4. Comparisons between theoretical and experimental results of R.C. Beam.

Central Deflection of the Beam (mm)
Beam Load Experimental Present Percentage
number (KN) Results [8] Theoretical Relative
Model Difference
0 100 4.600 4.600 0.00%
1 104 4.600 4.528 1.57%
2 110 4.600 4.541 1.28%
3 131 4.600 4.885 6.20%
4 111 4.600 4.827 4.93%
5 126 4.600 5.190 12.83%
L 6 130 4.600 4.829 4.98%
7 111 4.600 4.814 < 4.65%
8 123 4.600 5.042 9.61%
9 134 4.600 4.940 7.39%

In a plated reinforced concrete beam, the overall
flexural rigidity of the composite structural member
has no constant value, but varies with the applied
load, degree of cracking, plate thickness, and glue
thickness. Furthermore because of the viscoelastic
nature of the adhesive; its modulus of rigidity varied
with the intensity of the applied load. That explains
the slight differences (1.28 to 12.83%) between the
theoretical and experimental values where the beams
had different loading degrees.

Alexandria Engineering Journal, Vol. 36, No. 3, May 1997

“Design curves for sandwich beams

Design curves for sandwich beams with tbp

profiled face due to different cases of loading are

obtained. These design curves are for simply
supported beams, Figure (7) to Figure (10), as well
as for fixed beams, Figure (11) to Figure (15). They
may be helpfull for the optimum design for
composite beams. Also, they can be used for
obtaining the deformations and the internal forces in
a short time rather than going through the
complicated theoretical analysis. :
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All design curves are presented in dimensionless
form. For each simply supported beam, the relations
between the dimenionless length and the
corresponding dimenionless central deflection and
the positive bending moment of the top profiled
face at the mid span of the beam are given. The
cross section of the beam can take any dimensions.
Six curves are presented in every chart for different
values of alz. For every beam with fixed end three
charts are given. Two of them are the same as in the
simply supported beams while the third chart shows
the relation between the dimenionless length and
the corresponding dimensionless maximum negative
bending moment at the end of the top profiled face.
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Figure 13. Design curves for sandwich beams with top profiled face.
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Appendix A
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CONCLUSIONS

A theoretical model for the analysis of composite
beam sections is presented. The considered
composite section consists of two materials bonded
together by a flexible bond layer. The top matenal
has a flexural rigidity and the bottom material has an
axial resistance only. The equations of equilibrium
are developed and two methods of solution are
utilized. These methods are: a-the Transport Matrix
Method, TMM, and b- the Finite Element Method,
FEM. Computer programs capable of analyzing both
beams and frames are developed and checked.

Two types of composite sections are studied,
sandwich beams with top profiled face and
reinforced concrete beams strengthened by epoxy
bonded steel plates. Comparisons with the results of
the available experimental tests are provided. A good
agreement between the theoretical and the
experimental results is observed.

The analytical results are used to develop design
curves for sandwich beams with top profiled face.
Simply supported beams and fixed end beams are
obtained for different loading cases.

Some general conclusions are deduced:

1- Composite beam and frame sections consist of
two material bonded together by a flexible bond
layer can be analyzed successfully by using the
two proposed methods of solution TMM and
FEM.

2- Both methods give identical
deformations and internal forces.

3- The results of the theoretical model are within
0.13 to 12.83 percent of experimental results
available in the literature.

4- For the proposed model, the relative shear
deformation of the bond material has no effect on
the total bending moment of the composite
beam.

5- The obtained design curves enables the design
engineer to control the expected sandwich beam
deflection by decreasing the cross-section profile,

values of
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a12 or increasing the rigidity of the core, wL.
However, the internal forces can be controlled by
increasing the cross-section profile, alz, or increasing
the rigidity of the core, wL. ]
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