STRESSES DEVELOPED IN QUARTER SPACE
Part 2 : Parametric Study
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- This is the second part of an article that deals with stresses in quarter space. Theoretical analysis is
~ contained in part 1. The current presentation concerns with all stresses existing in quarter space
- geometry loaded in unsymmetric pattern. Effect of various parameters such as; apex angle, load
position, and location coordinates on the induced stresses are investigated. Stress singularities are
~ studied and assessed. Results evaluated here are fairly general and could be used via superposition
for other normal traction shapes and intensity of loading.

Keywords. Quarter Space, Stresses, Infinite Wedge, Unsymmetric Loadings.
NUMERICAL ANALYSIS

T e quarter space geometry and coordinate system & n x

are shown in Figure (1). Jofx)dx =« Z,_, w, e’ f(x) +R, (1)

The abscissas x; is the i zero of H (%), and w; is
22!t /x

n’H, )P

R, is the remainder defined by the equation

the weight given by

R, - A/ 2 @) (=< E<)
2" (2n)!

f2" (¢) is the 2n*h derivative evaluated at point {. "n"
is set equal to 20 in (1).

RESULTS

Figure (2) through Figure (6) illustrate the variation
of radial stresses with location coordinates r, and 6.
a is the length of the loaded segment. It is clear that
the smaller is the apex angle, the higher is the rate

Flgure 1. Geometry, coordinates, and loading. at which the radial stress changes with the location
i angle 6. The radial stress does not seem to alter for
Pursuing the analysis detailed in Part 1, r/a = 2.0, and r/a = 1.0. The linear 'variation shown in

Abdelmohsen (1997), the infinite integrals in (22), the radial stress value for small « has, in fact,

(23) and (24) are evalvated using Hermite changed in both rate, and even sign for higher «.

polynomials H_(x), Abramowitz et al. (1970), i. e, Such results reflect the strong effect of the apex
angle on radial stress alteration within the space.
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Figure 2. Variation of radial stress for various r/a

values.
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Figure 3. Variation of radial stress for various rfa

values.

“0.5 E L e e T T R T e e T IS T T

o
(=]
TYPVevT T ITIY I TTTY

Radial Stress
&
o

!
o

TITITTTTIT I Y

a = 60°

-

2 A s O AR LY 0 W T ) =h GeT I st ala Faagivag i
-40 -20 0 20 40 60

) Angle O

Figure 4. Variation of radial stress for various r/a

values.
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Figure 5. Variation of radial stress for various rt/a
values.
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Figure 6. Variation of radial stress for various r/a
values.

Tangential stresses for various apex angles are
presented in Figure (7), to Figure (11). For r/a = 2.0,
the induced stresses are almost nil for all o values.
Nevertheless, the variations of (gy) with (6) possess
the same shape, irrespective of the angle («). While
the location angle () does not influence the
tangential stress for r/a = 2.0, it does firmly have an
impact on tangential stresses for r/a = 0.2, 0.5, and
1.0. There is no appreciable difference in the values
correspond to r/a = 0.50, and r/a = 0.20, with respect
to either the shape or the value, especially for lower
values of ().
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Figure 7. Variation of tangential stress for various r/a
- values.
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Figure 8. Variation of tangential stress for various r/a
values.
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Figure 9. Variation of tangential stress for various r/a

values.
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Figure 10. Variation of tangential stress for various
r/a values.
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Figure 11. Varation of tangential stress for various
r/a values.

To further assess the effect of angle (a) on all
stresses at points fall on the symmetry line (8 = 0),
Figures (12), and (13) are created. Comparison is
selected at space symmetry line to offset the
boundary effects on the solution. Both radial and
tangential stresses at symmetry line are close to
behave independently on the angle (a). On the
other hand, the shear stresses behave differently, as
such, they tend to be smaller in value with the
increase in («). The above results stand for a wide
range of r/a values, e. g. r/a = 0.20, and up to r/a =
2.0.

It was necessary to substantiate the singular nature
of the existing boundary value problem, due to the
appearance of the term (a/r) in the final stress
formulation Eqs. (22), (23), and (24) Ref. (11).
Figure (14) through (16) illustrate the assessment of
stress singularity. For o = 45°, the adverse effect due
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to singularity occurs for r/a = 0.001. Stresses are norm
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As such, all developed stresses become as close to
zero as possible. The above results are specified for
,, a quarter space geometric shape (a = 45°). Results
“Case < for other apex angles e. g. a = 90°, and « = 30°, are
demonstrated in Figure (20), to Figure (25), with a

similar conclusion as above.
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Figure 25. Effect of load position on radial stress
at rfa =1.0 (case 1; x=0., case 2; x=1., case 3; X =
2., case 4; x =3).

Special attention has been densfied to further
investigate the induced shear stresses, with an
attempt to develop a simplified design graph. Figure
(26) through (29) have been generated to satisfy our
purpose.

Figures (26) through (29) depict results of

. 4nr .
normalized shear stresses | —— 14| evaluated using
a

Eq. (22) as a function of the location angle 6 and at
various wedge angle (2 a). Note that the wedge
angle is twice « 1. e. a = 45° and 90° correspond to
quarter and half space, respectively.

It is clear from (22) that 7,9 depends on the value
of cos (y In (a/r)), which yields the same 7, value for
certain a/r ratio and its inverse rfa, i. e., r/a = 0.50,
and a/r = 2.0, r/a = 0.20 and a/r = 5.0. This extends
from the symmetric property of the cosine function
which is : cos (x) = cos (x). Furthermore, the
location of maximum shear (at r/a = 1.0) is constantly
shifted to the positive @ direction, as the « angle
increases.

To facilitate the use of the technical results
presented in Figure (26) to Figure (29), Figure (30)
has been generated. The figure describes the
variation of the maximum shear stress value/location
with half of the wedge apex angle . Whilest the
change in the maximum shear stress location is
almost linear and in a positive rate with q, its value
quickly decays as « increases. :
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CONCLUSION

The results presented in the article are fairly
comprehensive. They demonstrate all developed
stresses in a quarter space loaded in unsymmetric
pattern. Effect of apex angle, and load position are
assessed. Developed equations are easy to be fed
into a short computer pregram so as to generate
answers for actual apex angle, and for a general
boundary loading conditions. The 30 figures
illustrated here, have been intended to cover a wide
range of design variables that might exist in practical
engineering cases.
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