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The article deals with a problem of quarter space loaded by unsymmetric loading. The problem is
modelled as infinite wedge, after which Mellin transform is applied to the governing differential
equation to eliminate the (r) coordinate. The solution to the transformed governing equation is
shown to contain four complex coefficients, which are evaluated using the known boundary
conditions. The final stress results formulated in terms of infinite integrals are explicitly contain the
' coordinates (r) and (), and the loading zone length (a). Part 2 of this article includes the parametric

(TRODUCTION

The problem of quarter-space (wedge) had
ceived quite an attention as early as the middle of
century, Carothers (1912), Inglis (1922), Tranter
8), and Williams (1952). Williams (1952) has
mvestigated the problem of finite wedge under
jarious boundary conditions with an attempt to
investigate stress  singularities arising in such
problems. Infinite wedge under symmetric loadings
was treated by 'Tranter [1948] using Mellin
ansform, to. overcome limitations observed in
previous solutions. In 1960, Hetényi has proposed a
semi numerical solution utilizing known solutions
for elastic half space to satisfy the new boundary
‘conditions via repeated superpositions. Although the
‘procedure is quite simple and general, its
convergence rate is very slow. The author of the
current article has tested Hetényi solution using
several examples having reasonable degree of
" complexity, with the same conclusion.

- Because they are exact in satisfying field equations
* and boundary conditions, closed form solutions have
. great advantage over numerical methods, where
either field equation or boundary conditions, or both,
- are relaxed. On the other hand numerical methods
- are able to create solutions for most engineering
- problems by few finger tip movements on computer
' keyboard. Numerical treatment of problems of
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" study that relates apex angle and load position to the resulting stresses.

¢y Words: Quarter Space, Stresses, Infinite Wedge, Unsymmetric Loading.

infinite boundaries e.g. half space and quarter space
problems have always required special attention.
Several assumptions are needed to be introduced,
where boundaries are to be terminated. Special
elements accounting for infinite boundaries were
proposed, Cook (1981). Or, combination of Finite
Elements (F.E.) and Boundary Elements (B.E.) is
established to explore the advantage of (B.E.) in
dealing with infinite domain, Estroff et al. (1989).
Although, these efforts lead to a more precise
simulation, they complicate easy implementation for
most code users, specially those with little
engineering background.

Our effort focused on establishing an exact closed
form solution for quarter space problems free from
shortcomings of numerical methods stated above,
and providing a design graph ready for practical use
by professionals. This closed form analysis utilizes
Mellin transform to reduce the independent
variables by one, which is the (r) coordinate. The
solution is then developed to satisfy the transformed
governing equation and boundary conditions. The
final solution is obtained upon using Mellin inverse
formula. The formulated infinite integrals are
numerically evaluated using abscissas and weight
factors for Hermite integration.

Whilest the theoretical analysis has been completed
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in this part, parametric study shall be given in the
second part which is devoted to this purpose.

ANALYSIS
The problem of quarter space could be reduced to

the determination of an Airy function @ (r,)
satisfying the biharmonic equation,

through the region (0 <r< ® ,- a < 8§ < a ), Figure
(1), and is such that the associated field of stress
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Figure 1. Geometry, coordinates, and loading.
conforms to the followmg conditions

gp(r,a)=p() (0 <r< )

op (1, -a) =0 0 <r<ow)
p(=0 (a<r< o)
T (L a)=Ta(,-a)=0(0 <r< o) 3)

It follows from 7, 8 and 9, with the aid of

for 0 < r < a, while a is the length of loadin
segment.

In addition to the condition that all stresses vams ,
at infinity, 1. e.

O Ogs T,g—> 0 asr— oo, (4-a)
we ‘adjoin, finally, the regularity requirement tha
the improper integrals

[604(1,0)dr, [g7,,(r,0)dr (~a<B<a) (4-b)

be convergent. This condition must necessarily hold,
since the traction on any radial line issuing from the
vertex and lying in the wedge region, must have a
finite resultant force.

The foregoing problem, Eq. 1 through Eq. 4
belongs to a general class of wedge problems, which
is most conveniently approached with the aid of
Mellin transform.

The Mellin transform, Hildbrand, (1976) of a
suitably restricted function of f (x), is given by

f(s) =Mf®;st=[fx)x*'dx (3
s designates the transform parameter, while the
corresponding inversion integral formally appears as

f(x) = — f°:§: f () xds ©)

Now, let ¢~ (s, 8) denote Mellin transform, with
respect to r, of the Airy function ¢ (r, §), where as ¢”,
0p T and 5) shall designate the corresponding
transform of ro,, % op, I 2 , and r? p. Thus,

¢ (s, 0) = [5o@ O)r* T dr 5 ()

67.(s,6) = [J o, (r,0)r**dr,

675(s,0) = [J0,(,0)r* 1dr,
T6(80) = [0t 0)1 dr, ©)
P () = [op@rtar )

Here, p (1) is the loading, assumed to be continuous integration by parts that, the transform of the
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mrﬁpatibility condition (1) assumes the form

[_df_+ “——+(s+2)2]<b =0 (10)

hile the transform of (2) becomes

ae?

In accordance with (8), (9), the boundary conditions
(3) are carried into

=(d2 -s‘d) 0y =sE+1)§ 17" —(S+1)Q;(11)

‘ol'e(s,‘a). =p'£s);o'§ (8, -a) =03ty (5,0)=7,4°(s,-@)=0 (12)

The general solution of (10) is given by

¢ (5,0) = Asin (s)§ + B cos (s) 6+ Csin (s +2) 6
+ D cos (s + 2) 6, (13)

Where A, B, C, and D are as yet arbitrary functions
of s, and (11), (12) imply

0,=-As(s+1)sinsf - Bs (s + 1) cos s
- C(s+1) (s+4) sin (s+2) 6-D (s+1) (s+4) cos(s+2)
0g= As(s+1)sinsf + Bs (s + 1) cos sf
+Cs(s+1) sin (s+2) 6+Ds (s+1) cos (s+2) (14)
Tp=A s(s+1)cos s8-Bs(s+1)sin s6+C(s+1)(s+2)cos(s+2)6-
[D (s+ 1) (s +2)sin (s + 2) 0]

Substitution from (14) into the transformed boundary
conditions (12) yields

A = -p(s) (s+2)cos(s+2)a (15)
2(s+1)G(s, @)

B =” p.'x(s.) (s+2)sin(s+2)a
2s(s+1) H(, a)

- P (s)cos(as)
26+1)G(s,a)
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_ _p (9)sin(sa)
2(s+1)H(s,a)

where
G(s,a)=(+1)sin(2s)-sin2(s+1)
H(s, @)=(s+ 1)sin 2s) +sin2(s + 1) a (16)

In view of (15), (16), the transformed Airy function
in (13) and the transformed stresses in (14) are now
fully determined.

On applying the inversion formulas for Equations (7)
and (8), we reach

b@,0) =L [titgrrvds, (D)
2xni

c+iwm .
c-iw T

o, (x,6) = 2—1—1 r75°2ds, (18)

1 c+iew . _g-2
o, (r,0) = — [, ;.0 g1 % “ds,
¢ 2xi ¢! o
6 _ 1 C+im o —s—2ds
Tg @,0) = — | inT !

2m1

Solution given by (17) and (18), depends upon the
choice of the line of integration Re (s) =c in the s -
plane. As far as the stresses are concerned, the
solution is not affected by the particular choice of c,
if the line of integration is varied within one and the
same strip of regularity common to the integrals in
(18). We now seek to determine the selection of
appropriate strip of regularity which is dictated by
the requirement that the improper integral (4-b) be
convergent.

On the basis of (13) to (16), all integrands in stress
formulas (18) are mesomorphic functions of s, whose
poles must coincide with zeros of G (s, a) and H (s,
«). On the other hand, G (s, a) and H (s, o) vamsh
if and only if

s+1)sn2a+sin2(¢+1)a=0, (19

and a root of (19) is a simple zero of G (s, @) and H
(s, o). On setting
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C=E+inp=(s+1) (20)
Equation (19) becomes
g'sinZa:tsinZ&g'mO
Or,
¢sin2a-sin2aécosh2an=0, 21
nsin2a-cos 2 afsinh2ay=0.

According to (19) to (21), G (s, a) and H (s, o)
have simple zero at s = -1, and possess no other
zeros on Re (s)= -1. It follows from (16) to (18) that
all transformed stresses are regular at s = -1.

Hence (8) assure the required convergence of the
two integrands (4 - b), provided the line of
integration is taken within the stress of regularity
containing s = -1. Moreover, the choice of c, say ¢ =

-1, is seen to be sufficient for the vanishing of a
stresses at infinity.

Clearly, the stress function ® can change at m
by an inessential additive linear function of ‘th
Cartesian Co-ordinates as the line of integratio
traverses s = -1.

This completes the solution to quarter space
problem.

RESULTS

Following the analysis giving in the foregoin,
section, the line integral in (18) is replaced b
integral from -oo to 0 and from 0 to oo along the lin
for which the real part of s is -1, less i times th
residual at's = -1. Omitting details of the algebra, we
find the following final forms for the stress
difference, Eq. (22), the stress sum, Eq. (23) and
the shear stress, Eq. (24).

inBcos a sin & cos 0
=-_2 r In ~1 oy 214 L 22
(50-0) = -2 [7_sincn In (%) [Ql . ]n & [ e @)
. a a
(6y+0) = I sm(nln(;)) H +nP, N Hy-nP,) cos(nln(;)) ~Py+nH, + nH, P, dn
Shr 2xr T . l+r|2 Ql Qz 1‘*‘1’]2 Ql Q2
_¢a, | sinBcosa sin a cos 0
r |sin2e-2a  sin2a+2a
where
H,(n) =sin (a + 6) cosh 9 (a - 6) - sin (a-6) cosh 3 (a+6).
Hz(n) = sin (a+0) cosh 5 (a - 8) + sin (« - 8) cosh 5 (a+6).
Pi(n) = cos (a-0) sinh 9 (o + 6) - cos ( + 6) sinh 5 (a-6).
P4() = cos (a + 6) sinh 3 (a-6) + cos (a-6) sinh 5 (a+ 6).
- R
Yo = ——1—(3)1 (n In[2 ‘ el & dn @4
: 4n\r nsin2a +sinh2n « nsin2« - sinh2na
where, transform, to reformulate the governing equation to

R; () = sin (a-0) sinh y(a+6) - sin (a+6) sinh 5 («-6)
R; () = sin («-6) sinh % (a+0)+ sin (a+6) sinh 5 (a-6)

CONCLUSION
The article presents a closed form solution for

quarter space (infinite wedge) under unsymetric
loading. The problem is formed using Mellin
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contain one independent variable, which is the (§)
coordinate. The transformed equation is then solved
in terms of four unknown complex coefficients, to be
evaluated from the known boundary conditions. The
final stress solution is build up through Mellin
inverse formula, in the form of infinite integrals.
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