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ABSTRACT

The problem of buckling of fiber reinforced elements embedded in bonded contact with a
supporting soil has been analyzed. The final buckling load is expressed, implicitly in terms of
buckling wave number, and explicitly in terms of all other concerned parameters, e.g. properties of
fiber reinforced elements, and the supporting soil. We have provcd that the 1% buckling mode
prevails for wide spacings between the reinforced elements. The 3" mode is the sole dominating
mode, when reinforced elements are grouped in small spacings. The buckling mode abides to the
2" one, if the range of h,, value lies between the above two extremes. Another parameter has
shown to have a strong impact on the buckling mode, which is the soil shear stress p . As such, the

INTRODUCTION

The present analysis considers the problem of
~“micro-buckling  of fiber reinforced elements
embedded in bonded contact with an isotropic
~ elastic soil continuum. Fiber elements are assumed
to be arranged unidirectional and equally spaced.
The proposed model is suitable to the analysis of a
unidirectional fiber reinforced soils, under the action
of compressive forces.

The category of problems deal with the interaction
between an embedded structural element and elastic
- continuum has several useful engineering application

[1]. 'The interaction between the reinforced

elements and the soil domain in reinforced soils falls

in this category.

When fiber reinforced soils are subjected to
compressive loads, the mode of failure is the fibers
buckling. The problem of buckling of fibers
embedded in elastic continuum has been studied
analytically by many investigators. Among those,

Selvadurai [1], Sadowsky [2], and Chung [3].

Selvadurai, and Sadowsky assumed an infinite

extended elastic isotropic continuum. Therefore,
‘their analyses are limited to a class of low - volume

percentage of reinforcement soils. Chung developed

a two dimensional model for a unidirectional
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buckling load is linearly increasing with the increase in the soil shear stress value.
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reinforced continuum. The critical buckling load
was evaluated numerically while some physical
assumptions were imposed. Greszczuk [4] conducted
an experimental study where, the influence of
volume fraction, end fixity, thickness, geometry, and
continuum properties on the buckling strength of a
unidirectional reinforced continuum were
investigated.

In the present two dimensional model, the
displacement and the stress fields in the elastic
medium are presented by Love’s strain functon.
The reinforced element buckling equation and the

““medium field equation are solved together using the
" separation of variables.
given explicitly in terms of reinforced elements and

Finally, the buckling load is

supporting soil properties, as well as the domain
geometry.

Mathematical Formulation

The present model considers' the reinforced
elements as elastic beams of width h; and flexural
rigidity E¢l; embedded in adhesive contact with Zh |
by L isotropic elastic medium. The Possion’s ratlo
and shear modulus are denoted by », and p
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respectively. The reinforced elements are assumed
to be uniformly spaced. Figure (1) depicts the
geometry of the problem.

Each reinforced element carries a compressive
force P which may be given in terms of the total
applied load Po, soil properties and geometry in the
form [3],

P

P=fope S (1)
(1 + 2h_/uh)

where n = EJE_. E;and E_ are the elastic moduli
for the reinforced element and the medium,
respectively.

The behavior of the elastic 1sotropic domain can be
readily formulated in terms of Love’s strain function
¥(y,z) [5], which satisfies the biharmonic equation,

V*¥(y,2)=0
where = a—zz-z- +-a% @

The displacement and the stress of interest in terms
of ¥ are [5],

. 13%0) 9, w. &
g oyan e 5 n" ayz) ?(.2) (3)

-where m denotes the soil domain.

The interaction between the reinforced element
(RE) and the supporting medium is assumed to be
due to an interaction normal stress mechanism which
acts at the (RE) - medium interface and tends to
restrain the transverse motion of the RE. Therefore,
the governing differential equation of the (RE)
lateral displacement has the form [2],

a‘uy(hwz) - azuy(hm,z)
3z Pz

El, ~2ho,(h,,2)=0 (4)

The continuity condition at the interface requires
that, '
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b ) %a % (

where f denotes the (RE).

Equation (5) contains boundary conditions for E
(2). Substituting Eq. (3) into (5), and use the resul
into Eq. (4) yields,

B &1 GZ‘I’(b,..,Z)PPaZ,_ 1 32‘1’(1!,,,,2)]
ozt 2, Oyaz a2 2p, oyaz 6

21;,%(vmv°-§3)w(hm,z)=o

Operating on Eq. (6) by Laplace’s operator an
then use Eq. (2), we get

& * >
+ + P =0
%y paz3ay azay2] (h,,2) )
N . S S
where K= 4Pomhf’ p—l“w.m 5 .

The solution to the above equation can be assumed
as,

00,2 = Y(h,)Zz) ®)
Substitution of Eq. (8) into (7) gives,
KZ VY /*pY/Z ///+Z/Y// =0 (9)

where the number of (°) defines the order of
differentiation.

Equation (9) could be rewritten as,




ABDELMOHSEN: Micro-Buckling of Reinforced Elements Embedded in Soils .

o N\

ﬁ Of

REINFORCED ELEMENT

2h o
REINFORCED ELEMENT i
* — °f
kN hf
ELASTIC ISOTROPIC
SOIL DOMAIN O

where c is a separation constant.
B To obl:am the constant ¢, we utilize Eq. (2) which
- in terms of P is

Vo =0 . (11)
- Equation (8) shall be used as a the solution of Eq.

- 11 with y replacing h,,. This leads to the following
equations

7 "

7'““ » (12-a)
Y//

2= 12-b
Y =n> (12-b)

7% in Eq. (12) is a separation eigenvalue. We now
define the boundary value problem with Eq. (12-b)
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Figure 1. Geometry and Loading.

as a governing differential equation and Eq. (10-b)
as its boundary condition. The solution of Eq (12-
b) could be written as,

Y =B, cosh ny (13)

Using the boundary condition (10-b) leads to the
following relationship,

c=-ncothn h, (14)
Substituting the value of ¢ into Eq. (10-a) gives,
KZV + pZ"'=-(n coth nh ) Z' (15)

The solution to Egs. (15) and (12-a) may be

assumed in the form
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Z=A,sinnz=A, sm% (16)

where m is an integer represents the number of

buckling waves.
The bucklmg load P can then be found from Eq

(15), which 1s

L coth (Z%h )
P L Ede m?e® ..

4hf|"'m ) mx mh!'

Equation (17) is the Euler buckling equation for a
beam - column member in case of no restrain given
from the surrounding medium  [6], i.e. p, = 0.
Another case of particular interest for reinforced
element embedded in infinitely extended medium.
This corresponds to the case of h /.- o . In such
case Eq. (17) becomes, ;

(18)

The critical number of buckling waves is determined
by solving the equation

P _o

oyt (19)

i

After some algébraic manipulations, Eq. (17) reduces
to the following form

coth 6 H 1
e® 6% sinh? 6

=T (20)

© and I in Eq. (19) are non-dxmensnonal quantities
equal to mzh_ /L and EfI‘/thpm m Tespectively.

Analysis

To show the essence of Eq. 17, the variation of the
buckling load with spacing between reinforced
elements, and the soil shear stress is investigated.
The root of Eq. 20 is found numerically using the

Bisection Method, James et al (1977). The integer
number of buckling waves is then substituted in Eq.
(17) to evaluate the buckling load. The follow@ng
numerical parameters were exercised in the analysis

- For the reinforced element
E; = 20.7 x 10* MPa
h¢ (element height) = 0.005 m
w; (element width) = 0.075 m
L (element length)= 1.000 m

- For the soil domain
Bm = Varics between 0.60 MPa [ soft clay | - 10.0
MPa [ loose sand ]
h,, = varies between 0.005 m - 0.50 m. Note that,
the distance between the reinforced element

is 2 h

Figure (2) depicts the effect of increasing the
spacing between the reinforced elements on the
normalized buckling load, shown in the left hand
side of Eq. (17). p,, seizes an average value of 6.0
MPa. m = 1, 2, and 3 corresponds to the 1%, the
2", and the 3" modes shown in the figure. The
figure simply illustrates that the range of spacing
between the reinforced elements grants the
existence of one mode of buckling and denounces
the other modes.

With wide spacing between the elements, the
mode prevails upon. For lower range of spacings,
higher modes predominate the buckling shape.
Figure (3) characterizes the effect of soil shear stress
on the buckling load of the reinforced elements. As
long as h, holds a value of 0.30 m, the buckling
mode is always the 1st, whilst the buckling load
changes linearly with p_. For h_, equals 0.15 m, and
B 18 less than about 3.0 MPa, the 1% mode is sdll
controllmg the buckling shape. At hlgher value of
B the 2" mode prevails. The 3™ mode governs
the buckling shape, for h_, equals to 0.05 m.
Apparently, the solution for t:his case does not exist
for soil shear stress of values less than about 4.0

MPa.

lst
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Figure 2. Variation of Buckling Load with h_.

CONCLUSION

The article has demonstrated the formulation of
the buckling equation of a reinforced fiber elements
embedded in bonded contact with the supporting
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Figure 3. Variation of Buckling Load with Soil Shear Stress.

soils. The elements are assumed to be unidirectional
arranged with equal and uniform spacings. We have

shown the explicit influence of element spacings and
so1l shear stress on the buckling load and mode.

C 205



ABDELMOHSEN:’ Micro-Buckling of Reinforced : Elements Embedded in Soils

REFERENCES

[1] A.P.S. Selvadurai, "On the Buckling of an
Infinite Beam of Finite Width Embedded in an
Isotropic Elastic Solid", J. Structure Mechanics,
vol. 12, No. 4, pp. 505 - 516. 1985.

[2] M.A. Sadowsky, et. al, " Buckling of Micro-
fibers", J. of Applied Mechanics, December, pp.
1011-1017, 1967.

[3] Wen-Yi Chung and Rene B. Testa, "The Elastic
Stability of Fibers in a Composite Plate", J. of
Applied materials, Vol. 3, January, pp. 58-72,
1969.

4

[5]
[6]
[7]
(8]

L.B. Greszczuk, "Micro-buckling of Lamina.}-
Reinforced Composites", American Society of
Testing Material, ASTM STP 546, 1974.
Y.C. Fung, "Foundations of Solid Mechanics",
Prentice-Hall, Inc., 1965.

H.L. Langhaar, Energy Methods in Applied
Mechanics, John Wiley and Sons, Inc., 1962.
R.M. Jones, Mechanics of Composite Materials,
McGraw-Hill Book Company, 1975.

M.L. James, G.M. Smith and J. C. Wolford,
"Applied Numerical Methods for Digital
Computation ", Second Edition, Harper & Row,
Publishers, pp. 93 - 96, 1977.

C 206 Alexandria Engineering Journal, Vol. 36, No. 3, May 1997




