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Direct numerical integration methods are compared in terms of computation time and accuracy of
results. As is well known, the cost of an analysis relates directly to the size of the time step which
has to be decided according to the stability and accuracy requirements. Also, the use of small time
steps leads to excessive computation and accumulation of round-off errors. In this research, a new
numerical integration procedure is proposed to obtain more accurate results even with larger time
steps. The energy balance criterion has been used successfully to obtain corrections for both the
velocity and displacement increments, at each time step, which are calculated through the direct
integration method, Wilson-6 method. As a first step, the proposed procedure has been applied to
a structure with a single degree of freedom under different cases of vibration; free vibration and
~ forced vibration with constant force or harmonic loading with different frequencies. The results have
been compared with the exact solutions, and the solutions of other numerical methods, Newmark
method and Wilson-§ method. 1t has been shown that the proposed numerical procedure yields more
accurate results than other numerical methods even with larger time steps, under different types of

loading.
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INTRODUCTION

In structural dynamics, two main approaches are
often used to obtain the solution of the equations of
motion whether these equations are linear or
nonlinear. In the first approach, the mode
superposition method, the eigenvalues and eigen
vectors of the resulting matrix system are first
computed and used to uncouple the equations of
motion. Then, the response of the system is
formulated as a linear combination of the mode
shapes[1]. This method is based on the assumption
of linear behaviour and proportional damping. These
inherent limitations, as well as the large computing
time required to extract the eigenvalues and vectors
of the system even using the modern versions of the
available algorithms [2-4], limit the usefulness of the
method to a narrow range of applications[5].

The second approach is the direct numerical
integration method. This method is most efficient
when all important periods of the system are
clustered together [6]. An integration operator is
defined as a transformation on the acceleration,
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velocity, and displacement vectors at time t_, to the
acceleration, velocity and displacement vectors at
time #,,,. The time- integrators used include both
explicit and implicit methods [7]. The explicit
approach is algorithmically quite simple and
relatively efficient in the context of storage
requirements. However, with regard to the stability
of the numerical solution, very small time step sizes
are required to avoid accumulation of round-off
errors and diverged solutions. In contrast, The
implicit approach is generally stable allowing larger
time steps with converged solutions. The most
efficient methods of the implicit approach are the
Newmark method [8] and Wilson-8 method [9]. In
general, the step-by-step numerical integration
technique is subject to numerical errors, involving
numerical instability, truncation error, spurious
damping, etc. The numerical errors are conveniently
measured as a percentage period elongation and
amplitude decay [9]. Both Wilson-6 and Newmark
methods result in large period elongations and
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amplitude decays as At/T increases [10], where At is
the time step size, and T is the natural period of the
system. However, the accuracy of numercal
integration depends also on the loading and physical
parameters of the system as well as the tme step
size.

It is obvious that more research for more accurate
numerical integration with large tme steps is
required.

METHODS OF ANALYSIS

In this study, a new numerical integration
procedure is introduced and compared with the
implicit integration methods, Newmark method, and
Wilson-§ method. Also, the proposed method is
compared with the exact solutions, the solutions of
the differential equations of motion. The numerical
comparisons have been done on a single degree of
freedom system, Figure (1), under free vibration as
well as different types of dynamic loading.

£ the system (m)

l . ‘I ;%’

Figure 1. Mathematical model for a single degree of
freedom system.
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The parameters of the system were chosen so that
the angular natural frequency w is equal to 2«
rad/sec, and the natural period T is equal to 1 sec,
where the stiffness of the system K is equal to 6.85
N/mm and the mass of the system m is equal to
173.4 kg.

NEWMARK METHOD [8]

The general relations are introduced with the two
parameters § and 3, where § and 8 were proposed to
indicate how much of the acceleration a_,; at the
end of the interval t  ; affects the corresponding
velocity V| and the displacement X_ ;.

Viei =Vo+(1-98).a . At + 6. a .- At (1)
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X, =X, +V_At+(% - B).a At4B. a_,.AC (D)

n+l

If 6 1s taken as 2 and B as %, a uniform value of
acceleration during a time invertal equal to the mean
of the initial and final values of acceleration will be
obtained. Then, the velocity and displacement
increments will be as follows :

AV =a, . At + Aa_ . At [2 ®)

AX, = V,. At + 0.5 a,. A +°0.25 Aa,. A (4)
The equation of incremental motion is :
m. Aa, + K. AX| + C. AV = AF, (5)

Where m is the mass of the system, K and C are
the stiffness and damping coefficients, respectively,
and AF is equal to (F,, - F,), where F_ and F
are the exciting forces at times t, and ¢,
respectively.

Substituting the velocity and displacement
increments in the equation of numerical motion one
obtains:

K.Aa =AF ©)

Where:

K= m+025KAt+05C. At

and
AF=AF, - (KA)V, 0.5 K. At + C. A0). a,

Aa, = K. AF )

Substituting Aa, in Egs. (3) and (4), the velocity
and displacement increments, AV  and AXm are
determined.

Hence, the velocity and displacement at the end of

a ume step, V., and X, are calculated as :

Vn = Vn + AVn (8)
Xn+1' Xn + AXn (9)

Finally, the acceleration a__; at the end of a time
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step, , is calculated by satisfying the equation of
motion at the end of the time step where:
-CV,,:-K.X,,) 10

-1
dpyp =M (Fn+1

WILSON-§ METHOD [9]

The Key idea employed in the development of the
Wilson-§ method is the satisfaction of the equation
of motion outside the time interval At at the 6§ point,
where @ > 1. The basic assumption is that the
acceleration varies linearly over the time interval
from t to t + 6.At . The value of the factor @ is
determined to obtain optimum stability of the
numerical process and accuracy of the solution. It has
been shown by Wilson, for § >1.38, that the method
becomes unconditionally stable.

From Figure (2), the acceleration increment at the
end of extended time interval 6.At is Aay, and by
integration, the velocity and displacement
increments at the end of extended time interval §.At
are AVy and AX,, respectively, where:

AVj = a_ . (0.A0 + 0.5 Aag. (0.A) (1)

AXy =V, (0.A0+0.5 a_.(6. AY)*+Aag.(6. A)*/6(12)
from Eq. (12)

Aag = 6 AXg(6.A0% - 6V, [ (0.A0) - 32, (13)

Substituting Aay from Eq.(13) into Eq.(11), one
obtains:

AV, = 3 AX(0.A0) - 3V, - 0.5 a_ . (6.A0) (14)

The equation of incremental motion over the

extended time interval (6. At) is :
m. Aao +* K.AXo + C. AVo -AFa (15)

Where: AFg = Fy - F, and Fy is the exciting force at

the end of the extended time interval (6.At).
Substituting Aay and AV, from Eqgs. (13) and (14),

respectively, into Eq. (15) one obtains:

K.AX, = AF, (16)
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Where:
K=K + 6m/(8.At)% + 3C/ (8.A0)

and  AF, = AFy + m {6V, / (0.A0) + 3 a_}
+C {3V, +05a,.(6.A0}

Hence,

AX, = K'.AF, (17)

a(®) ‘1|'
“
4

;
|

& B .t time (1)
Figure 2. Linear acceleration assumption over the
extended time interval (6. Av).

Substituting AX, from Eq.(17) into Eq.(13), Aay is
obtained. Then, the acceleration increment Aa
corresponding to the normal tume interval At is
calculated from the following relation:

Aa = Aaylf (18)

The velocity and displacement increments AV and
AX,, respectively, corresponding to the normal time
interval At are calculated as follows:

AV, =a. At + 0.5 Aa At (19)

and
2 \
AX =V .At+ 05 an.At2+ Aa_. At°/6  (20)
The velocity, displacement, and acceleration, V_, |,
X,.1 and a__,, respectively at the end of the normal

time step At are calculated form Egs. (8), (9) and
(10), respectively.
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PROPOSED NUMERICAL PROCEDURE WITH
ENERGY BALANCE CRITERION:

This proposed procedure is based on introducing
corrections, 6V, and 6X,, for the velocity and
displacement increments, AV, and AX , respectively,
at each time step. Then the correct corresponding
acceleration a, is obtained through satsfying the
equation of moton at the end of time interval t__,
using the correct velocity and displacement V, ; and
X, 1> respectively, where V  , = V, + AV + 46V,
and X, = X + AX + 86X, Figure (3).

acoeleration (2)

time (t)
Figure 3. The proposed acceleration, velocity and
displacement variations over the time step, At.

The velocity and displacement increments AV and

AX,, respectively are obtained through Wilson-§
method, on the assumption that the acceleration
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varies linearly over the extended time interval
t, tot, + 6.At.

The velocity and displacement corrections, 4V, i
60X, respectively, are obtained through a quadi
equation resulting from the following energy bal
criterion:

AW = AT + AU )

Where: W is the external energy, T is the Kinetic

energy and U is the potential (elastic) energy. The

relation between the two proposed corrections, 8V,
and 86X has been derived as follows:

1- It is proposed that the actual variation of the
acceleration is not linear, as has been assumed in
Wilson-§ method, but it is a general curve of 2
certain degree, as shown in Figure (3).

2- As a result of the difference between the linear
assumption and the present proposed curve, there
will be a velocity correction 8V, where 8V is
equal to the shaded area shown in the diagram
representing the acceleration variation with time,
Figure (3).

3- Due to the velocity correction 8V, there will be
a change in the velocity path from the first |
assumed curve, yielded from the integration of
linear acceleration, to the actual velocity curve,
yielded from the actual acceleration integration,
as shown in Figure (3).

4- As a result of the difference between the first
assumed curve of the velocity and the actual one,
there will be a displacement correction §X,
where 60X is equal to the shaded area shown in
the diagram representing the velocity variation
with time, Figure (3).

5- The shaded area in the diagram of the velocity
variation, 6X, is equal to (Z.5V .Av), where Z is
a factor depending on the degree of the actual
velocity curve. In general the area under any
curve can be calculated as (Z.L..H), where L and
H are the length and height of a curve,
respectively,and Z is a factor which can be
decided according to the degree of a curve.

Now, the energy balance criterion, Eq.(21) is used
to obtain the corrections 8V and X as follows:

Fl +F n+l
L AW= (25 (AX,+8X,)=F,, (AX,, + 8X,X22)
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Where: F,, = (F, + F_ ) /2

2 AU= 2 K Xpi? - JKX, =2

2
K. (Xm-l - Xn) - (Xn+l o Xn)
AU--ZI- K. (AX, + 8X,).2X +AX +6X,)  (23)
3. AT-%m, V2 -Ltmv,?
'% m (Vn+1 et Vn) : (Vn+1 + Vn)

AT.%m (AV, + 8V,) . (2V, + AV, + 8V,) (24)

4. Substituting Egs. (22), (23) and (24) into Eq. (21),
the following relation is obtained:

F,,. (AX,, + 8X,) -% K. (84X, + 6X,)

(2X +AX 46V, )+ -%m
(AV_+8V).2V, +AV,, +8V,) (25)

Substituting 86X, = Z. 8V, . At, where Z is assumed
to be (1/3), after considering several values in an
attempt to achieve the most accurate results.
Eq.(25), is a quadratic equation in V. The smaller
absolute root is always the acceptable solution for
the velocity correction 8V,. ‘ :

5. Having obtained 8V, the displacement correction
60X, is calculated as:

80X = Z. 8V, At (26)

Finally, the velocity and displacement V__, and

b S mspégdvely, at the end of the ume step At
are calculated as follows:

Vo=V, + AV, + 6V, 27)
and

X=X, + AX| + 86X (28)

The corresponding acceleration a_,; is calculated
by satisfying the equation of motion, Eq. (10), at the
end of the time step At.
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DIFFERENTIAL EQUATIONS OF STUDIED
CASES:

The exact solution is obtained through the
solutions of the differential equations of motion of
several cases which have been studied in this

research.
Undamped Free Vibration:
The equation of motion of free vibration without

damping is :
m.a + KX=0 (29)
The solution of this equation is :-

X = A cos wt + B sin wt 30)

Where :w= K/m, A and B are constants of
integration which can be determined from the initial
condition of motion (A = X_and B = Vy/w, where X
and V, are the displacement and velocity at the
initiation of motion). Therefore, the general solution
for this case is :

) A
X =X, cos wt + —. sin wt (31
@

Forced Vibration With Constant Force (Fp) :
The equation of motion with a constant force F_ is:

ma + KX = F, 32)

The solution of this equation, including the
complementary and the particular parts, is :

: F
X = A cos wt + B sin wt +ig (33)

Where: A and B are constants of integration which
can be determined from the initial condition of
motion. In case of X = 0 and V|, = 0, the constants
of integration become A = -Fo/K, and B =0 .
Then, the general solution is

X 2 (1 ) (34)
- 2 t
COS w
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Forced Vibration Under Harmonic Loading (F,
Sinwt):
The equation of motion under harmonic force with
frequency @ is:
m.a + KX = F; Sinwt (35)

The solution, including the complementary and
particular parts, 1s :

K :36
X = A cos wt + B sin wt + 2sinl.)t (36)

1-r

Where : r is the frequency ratio, r = @ , while A and
®

B are the integration constants. For X; = 0 and V),
=0, as initial conditions of motion, the integration

-r.F /K

constants become; A = 0 and B £ Then,
1-1
the general solution in this case becomes:
P K o= :
X = (sin wt-rsin wt) 37)
1-r2

NUMERICAL COMPARISONS:

The results of the proposed procedure have been
compared with the exact solutions to evaluate the
reliability and accuracy of the procedure. Several
numerical comparisons have been done, also,
between the proposed procedure and the other
implicit integration methods, Newmark method and
Wilson-6 method, using different time step sizes to
verify the efficiency of the proposed procedure.

(I) Case of Undamped Free Vibration :

The response of an undamped single degree of

freedom system of w = 27 rad/sec and T = 1 sec,
under free vibration with initial condition,
Xo = 25.4 mm. and V| = 0.0, has been calculated by
the present proposed procedure with tme step
At=0.075 T, and compared with the exact solution.
As shown in Figure (4), the numerical results of the
proposed procedure coincides with the exact
solution.

Again, the response of the same case has been
calculated by the proposed procedure with larger
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tme step, At = 0.2 T, and compared with the exact
solution over a long time period, 6.4 sec. As shown
in Figure (5), the result of the proposed procedure
is stll equal to the exact soluton without any
difference in the early stage. After almost the three
first cycles, there is a very small difference which
increases at a very small rate. This small difference
may be attributed to the accumulation of round-off
errors after many time steps over a long time period.
It is worth noting that for the same tme step,
At=0.2T, the error, percentage amplitude decay,
associated with the response of this case using
Wilson- method is more than 17%, while the error,
percentage period elongation, associated with the
response using Newmark method is more

than 9% [10].

(i1) Case of Undamped Forced Vibration with
Constant Force (F) :

The response of the same model under constant
force, Fy = 44482 N, with initial condition X, =
V=0, has been calculated by the proposed procedure
with two different time steps, At = 0.15T and At =
0.25T, and compared with the exact solution and the
numerical solutions of Newmark method and
Wilson-6 method with time step, At = 0.075 T. As
shown in Figure (6), the result of the proposed
procedure with a time step, At = 0.15 T, coincides
with the exact solution. With larger time step, At=
0.25T, the result of the proposed procedure is still
much better than the result of Newmark method
and Wilson-6 method though using smaller time
step, At = 0.075 T.

(m) Case of Undamped Forced Vibration with
Harmonic Force of Low Frequency:

The response of the present model under harmonic
force, F = F sin @t where Fy = 44482 N and © =
0.1 w, with initial condition X, = V= 0, has been
calculated by the proposed procedure with time step,
At = 0.075 T, and compared with the exact solution.
As shown in Figure (7), the result of the proposed
numerical procedure precisely coincides with the
exact solution, while there is a small difference
between the results of Newmark and Wilson-§
methods, with the same time step At=0.075 T, and
the exact solution.
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ldisplacement (25.4 mm) w.
‘the new procedure (At = 0.075 T)

lof / _the exact solution

05|

0-0 l L >

24
time (sec.)

-05 |
-{o0

Figure 4. The response of undamped single degree of freedom system under free vibration
(X,=25.4 mm, V =0).

A

the exact solution the new procedure (At = 02T)

displacement (25.4 mm)
o A

o5t

0-0

-051

-{ot

Figure 5. The response of undamped single degree of freedom system under free vibration
(X,=25.4 mm, V =0).
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displacement (25.4 mm)

The exact solution
The new procedure (At = 0.15 T and At = 0.25 T)

Newmark method and Wilsoa-9 method (At = 0.075 T)

T At=0075T
| /
25| , , . /
A . ! ]
[
o i
L ‘!! \

ool i o 13 ‘};" | : .
S
time (sec.)

Figure 6. The response of undamped single degree of freedom system under constant force
(X,=0, V=0).
: The exact solution
00 00 o o o Thenewprocedure (At= 007ST)
................... Newmark method and Wilson-6 method (At = 0.075 T)
displacement (25.4 mm)'

20}

fo}f

00 ‘ H Rl st ; L : - >
time (sec.)

Figure 7. The response of undamped single degree of freedom system under harmonic force
(@ =0.1w, X =0, V =0).

Again the response has been calculated by the
proposed procedure with larger time step, At= 0.15T,
and compared with the exact solution, over a long
time period, and the numerical results of Newmark
method and Wilson-6 method with the same time
step, At = 0.15 T. As shown in Figure (8), the
numerical results of the proposed procedure are
more accurate than the results of both Newmark and
Wilson-§ methods.
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(iv) Case of Undamped Forced Vibration with
Harmonic Force of Relatively High Frequency:

The response of the same model under harmonic
force with relatively high frequency, F = F, sin ot

where Fy = 44482 N and ® = 1.5 w, with initial
condition X, = V, = 0, has been calculated by the
proposed procedure with time step, At = 0.075 T,
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ind compared with the exact solution and the
numerical results of Newmark method and Wilson-6
method with the same time step, At=0.075T. As
shown in Figure (9), the results of the proposed
method are more accurate than the results of the
other numerical methods.
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Using larger time step, At = 0.125 T, the results of
the proposed method are much more accurate than
the results of both Newmark and Wilson-6 methods
with the same time step, as shown in Figure (10).
Moreover, the results of the proposed method have
always the same trend as the exact solution.

—__  Theexactsolution
0o--0--0-0-0© mneWprocedUre(Al=0.15T)
NewmarknmhodandWilson-Bmethod(At=0.15 T)

displacement (25.4 mm) At=015T
ot
T- > /e ' \'\ !
|
A ! i (S o [

20 / b B b R

l ;

H 3 1 i I \{

| | i i ‘ \ |\\ :
/ | £ RPN . %
{0 B : B - e
l i g N
. l 2 L] L,

00 | 24 time (sec.)

Figure 8. The response of undamped single degree of freedom system under harmonic force
(@=0.10, X =0, V =0).
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)
5o, displacement (25.4 mm)

The exact solution
?hencwprocedure(At=0.075 T)
Newmark method (At=0.075T)

Wilson-0 method (At =0.075T)

=

S8 2H 8
- 24 7
time (sec.)

..r

Figure 9. The response of undamped single degree of freedom system under harmonic force
(0 =1.50, X =0, V_=0).
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|

displacement (25.4 mm)

The exact solution
The new procedure (At = 0.125 T)

Newmark method (At=0.125T)
Wilson-8 method (At=0.125T)

Figure 10. The response of undamped single degree of freedom system under harmonic force
(@=1.50, X,=0, V_=0).

CONCLUSIONS

- A new numerical procedure, based on introducing

velocity and displacement corrections, at each
time step, for the velocity and displacement
increments through satisfying the energy balance
criterion, has been proposed and checked by
several numerical comparisons.

The proposed procedure has proved to be reliable
and more accurate than  other numerical
methods, Newmark and Wilson-§ methods, in all
cases studied, even with larger time steps.

- With respect to the proposed procedure, time

step At = 0.15 T seems to be the step size limit
which gives almost exact solutions in cases of
undamped free vibrations and forced vibrations
with constant force.

In case of forced vibration with harmonic force of
low frequency, the step size limit, At = 0.15 T,
gives sufficient accurate result, while this step
size limit should be less in case of harmonic
forces with high frequency, according to the value
of the force frequency.
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