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ABSTRACT

A combined simplified linear model of the horizontal ship motion in sway and yaw, together with
the steering system, in state space form is presented. A solution to the problem of autopilot design
is carried out with LQR (Linear Quadratic Regulation) approach and comparisons of performance
made with conventional PID (Proportional-Integral-Derivative) and PD controllers. Through a
numerical example, the performances of the resultant control system, applied to a large container
ship, are illustrated, and the advantages of using the LQR approach are demonstrated.
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System matrix for ship motion
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Symmetric non-negative definite matrix
State vector of control system

State vector of PID controller

Rate of yaw

Yaw acceleration

Sampling time

Time constants

Nominal ship velocity

Ship velocity in transverse direction
Sway acceleration

Combined state vector

x-position of center of gravity

State vector for ship motion

State vector of steering mechanism
Hydrodynamic force acting on ship in
transverse direction

aY/or

aY/or’

aY/ov

aY/ov*

aY/d6

Rudder angle

Rudder command angle

Positive scalar weighing factor 7
Transition matrix of digital control system
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¥ Yaw angle
V4 Desired change in ship’s course
INTRODUCTION "

Simulation is an important tool which enables the
design and development of digital steering control
systems. Simulation models enable the analysis of
control systems in both the frequency and time
domains, in order to achieve the desired dynamic
control performance. The model should be
sufficiently representative of the vessel to be
controlled, so that the dynamic performance can be
established during the design process before actual
installation onboard ship. The simulation model
should represent the motions to be controlled.
Automatic ship steering aims at controlling the ship’s
motion with respect to the desired course. In what
concerns the problem of ship dynamics and
manoeuvering, mathematical modeling and
numerical estimation of the forces, moments and
coefficients are presented in [1-4]. Horizontal
motions and simultaneous heading control have been
analyzed by numerous authors, [5-7]. Since the
steering system plays an important role in the
directional stability and the dynamic behavior of the
ship during manoeuvering, it is important to consider
the steering mechanism together with the ship
dynamics model for a thorough study of the design
of the autopilot.

Many researchers in recent years have investigated
the problem of autopilot design [5-10]. Most of
these authors have generally proposed systems based
on modern control theory, with the relatively simple
PID controller, pole assignment design or adaptive
control using continuous time techniques [5-8]. An
alternative autopilot control system based on neural
networks has also been treated [9,10].

PID controllers are widely used on ships. But the
real problem, is that the true relationship between
the optimal controller parameters values and the
whole system dynamics are not easy to identify
without considerable experience of ship performance
[9].

One of the modern optimal control design
techniques that has found general practical
application is the linear digital regulator approach.
Although the regulator problem is defined with
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reference to a system with zero reference inputs, the
optimal linear digital regulator design assures tha
the resultant system is stable, and possesses certain
damping characteristics, so that the performance of
the system will be satisfactory in practice even if the
inputs are nonzero. This paper presents a possible
alternative digital autopilot controller design by LQR
technique. In order to demonstrate the optimal
properties of that controller, conventional PID and
PD controllers are also designed to perform the same
course keeping under the same conditions.
Comparison of performance is included.

LINEAR MODEL OF SHIP MANOEUVERING

The main components of the course keeping
control loop, in its most common configuration, are
shown in Figure (1). The autopilot shown uses the
heading error as the control signal to reach the
required heading. The ship model used in the
simulation of ship manoeuvering is based on ship
kinematics and basic hydrodynamics [1]. The
linearization of the equations of ship motion for the
plane motions of the ship leads to uncoupling the
yaw and sway equations from that for surge [3]. The
linearization of the equations of motion is considered
about a nominal condition at constant forward speed
with negligible external disturbances from waves and
wind. The remaining linear model representing sway
and yaw motions will be

(m-Y )v+{mxg -Y)i=Y v+(Y -mu)r+Y,.8 (1)
(mx-N)v+{I, -NDi=N v+(N -mxu)r+N,.8

where
r=dy/dt. (2)
The motions described by equations (1) and (2) can

be conveniently described as a linear SISO in state
space form as:

X, (5)=4_x (s)+b,.3(s)

YE)=¢,x,(5) ©)
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Figure 1. The course control loop.

This model describes the ship response to rudder
deflection. The state vector X,,,(s)=[v(s) r(s) Y(s)] T is
constituted by the sway velocity v, yaw rate r and
the yaw angle y; the control input is constituted by
the rudder angle 8. The coefficients of the matrices
A, and b are given in detail in [4], Appendix 1.
The dynamic analysis of the electrohydraulic
steering system was carried out in [8]. For such a
model a third order realization was found to be
satisfactory in the form

X (5)=A_x (5)+b .6 (s)
8(s)=c,x (5)

“)

where x(s)=[x(s) x,(s) x:,(s)]T is an intermediate
state vector, the input is the rudder command angle
f, and the output is the rudder angle 8. The
coefficients of the matrices A  and b, depend on the
charactenistics of the mechanism construction, usually
parameterized in terms of the rudder servomotor,
solenoid and a three state hydraulic valve.

It is possible to obtain. the linear model in a more
compact form, expressed in terms of the joint state

vector x(s)=[x_ (s) | XS(S)]T;

X(s)=A.x(s) +b.8 (s)
Y(s)=c.x(s)

(5

where
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Am bmc:
A=

0 A,
b=[0 b)7 ,c=[c, O]

(6)

The resulting open loop block diagram, shown in
Figure (2), illustrates the ship being regarded as a
linear SISO system having the rudder command
angle 6, as the control input and the heading angle
¥ as the output variable.

OPTIMAL DIGITAL CONTROLLER DESIGN

In discrete form, the model of the process to be
controlled, equation (5), can be represented by the
following state space equations [11]:

x(k+1) =¢..§(k) +h.0 (k)
y(k)=c.x(k)

)

where
HD=e?,
=0 (8)
h(D=- f &(x).b.dx
=T

and T is the sampling time.
According to these equations, it is possible to
formulate the autopilot design problem within the
framework of LQR theory [12,13]. This ‘approach
aims to design an optimal feedback gain vector K
such that the feedback law

0,0)=-Kx(k) ©
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Figure 2. SISO representation of ship dynamics and steering system.

involves the minimization of a quadratic performance
index of the type

1=Y" [x7(0).Q.x(k)+2.0 2(K)] (10)
k=0

subjected to the initial condition x(0) = 0, where the
symmetric non-negative definite matrix Q and the
positive scalar weighing factor A take into account
the relative weights to be assigned to the different
output variables as well as to the control input 6 (k).
The feedback vector K is thus given by

K=(A+hTHh) 'R"H ¢ (11)

where the positive definite real, symmetric constant
matrix H is the steady state solution to the
associated discrete matrix Riccati equation

H=Q+¢[H-Hh(A+h"Hh)'R"Hl$p (12

The final form of the digital control system, with a
desired input variable y is shown in Figure (3).

THE PID AND PD CONTROLLERS
To demonstrate how well the proposed optimal
digital controller works, a PID controller will be also

designed for comparison. A simple discrete PID
controller can be written as:

k
8,0 -Kpe()+K,Y e(i-1)+Kple()-ek-1]  (13)

i=1
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where
e(k) = Ay(k) = yd(k) - y(k)
and ry = Kp + Ky
fl =-Kp + KI - Z'KD
rZ = KD'

From equation (13) we obtain the difference
equation

6.(k)-6(k-1)=ry.e(k)+r.e(k-1)+r,.e(k-2)

which can be reformulated easily in state space form
[14] as:

q (k+1)=A .q (k)+b .e(k)

(14)
0.(k)=c_.q (k)+d .e(k)
where
e _0 1 b _0
“lo 1) 1f (15)

(:,~,=[r2 ('o"’l)]’dc:"o-

Consider the closed loop control system, Figure (4),
comprised of the model process with the PID
controller located in the forward path with unity
feedback and a desired input variable y4(k).

Both the process, equations (7), and the PID
controller, equations (14), can be easily introduced in
one set of state space equations [11], whereas the
output signal Y(k) can be denved directly with
respect to the desired signal y (k).
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Figure 4. Steering control system with digital PID controller.

The over all state space equations will be

qk+1)=A _q(k)+b .y (k)

(16)
¥(kK)=c,.qk)
where,
A, -b,.c ]
Ar= s
he, &-hd.c
17)
b,=[b, h.dJ’,
c,=[0 c,
and q(k) = [q (k) | x(k)]T.

For designing a PD controller, the parameter K will
be set equal zero.

Once the controller parameters values are
identified, the response of the course angle (k) and
the rudder angle deflection §(k) can be calculated.

NUMERICAL APPLICATION

Consider a large container ship with the following

parameters:
Length LBP =170.6 m
Breadth B =244 m
Drafte d =104 m
Displacement A = 20,000 tdw
Nominal speed u, =22.6 knots
Nominal rpm n;, = 116.0 rpm

Propeller diam. D= 62 m
According to the assumption of constant forward

speed and neglecting the nonlinear terms, the linear
model of dynamical equations of motion represented
in state varable form is

-.0331 -.0348 0O 1.5%107
x,=-0165 -.0579 Okx_+-37x10738
0 1 o 0 (18)
v=[00 1]x

where xm-[vryp]T.

The parameters for ship steering dynamics given in
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this steering model are given in [4].

Concerning the electrohydraulic steering system,
the third order system was presented due to slow
rate saturation in the hydraulic rudder servo. This
third order transfer function has the form

8(s) _ K, (19)
6.(s) (1+T;s)(1+T,s)(1+T;s)
The numerncal values for the gain and time
constants are chosen as [8]:
K = - 0.4408 T, = 0.0714 (s)
T, = 0.0915 (s) Ty = 16.0772 (s).
"The transfer function stated in equation (19) can be
rewritten in state space form as

00 -9527] [-4.1967
%1 0 -1546176f,+ O B, 0
0 1 -24.9968 0
8=[0 0 1Ix,

which are identical to the form of equations (4).
According to equations (5), considering that the
heading angle y is the output variable and the
rudder command angle 6, is the control input,
equations (18) and (20) can be combined in one state
space form as

0331 -.0348 0 0 0 1.5%10° [0
-0165 -.0579 0 0 0 -3.7+107
il © 1 000 0 e 6,
0 0 000 -9527 -4.1967
0 0 01 0 -154.6176 0
0 0 001 -24998] 0

$=[001000]x

Since the container ship dynamics are relatively
slow, a sampling time of 1 second has been chosen.
Referring to equations (7), the transition matrix ¢
can be calculated as:

9677  -333+107 0 82:10° 9.7+10° -13+10"
-1.58+107 544 0 -19+107° -22+10"° 25s+10¢
|-801+10° 9717 1 -84+10¢ -19+10° -22+10°

0 0 0 9493 -59+107 3.62+107
0 (1 0 1546 -9.54+107 -2.6+107*
( 0 0 62410 -38+10¢ -3.6+10*

whereas the control vector h will be

h =[-1.5%10° 3.5*10° 1.0*10°
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4.1051 -5848  -2.24*10%]T
Choosing Q = ¢T.c and A = 1.1 and solving the
Riccati-equation, equation (12), the feedback gain K
can be computed from equaton (11)

0.9982

K = [ -6.4308 18.688
1.3*10° ]

-6.81*10° -9.0*10°

To evaluate the control quality of the proposed
optimal autopilot controller, the simulation is
reported for a ship initially travelling in a straight
line for 50 seconds and then changing the heading
30°. Figure (5) shows the yaw angle y, the rate of
yaw r and the rudder angle § versus time. It should
be noted that the rate of yaw is very small with a
maximum value of 0.4 (deg/s). The maximum rudder
angle to achieve the desired course is about 7°. The
desired course is achieved after about 300 seconds,
with a small overshoot.

In the design of the PID controller, it is not easy
to estimate the values of the controller parameters.
It could be shown that, provided the PID controller
parameters Kp, K; and K[ are carefully adjusted
according to different situations, then an acceptable
performance can be found.

A range of Kp, K; and K, values were studied with
the PID controller, Kp € [0,1], K; € [0,0.01] and K
€ [-2,0], and the results presentec{ correspond to the
best values of all different combinations studied.
The results for some of the estimated PID and PD
controllers are presented in Figure (6) and (7). For
the PID controller, Figure (6), it is noted that K|
controls the degree of overshoot, and the results
presented correspond to the best pair of Kp and Ky
values of all the different combinations studied. For
this reason, it is suggested to design a PD controller,
where K| is absent, with different values of Kp as
shown in Figure (7). It can be noted that decreasing
Kp values will increase the delay time and the
settling time of course keeping response. Whereas in
what concerns the rudder angle, it can be stated that
the changing of K; or Kp values has an insignificant
effect on the behavior of the rudder angle.

Finally, comparing the results for the three
simulations described, using the LOR controller, the
PID controller and PD controller,which are
presented in Figure (5), (6) and (7), it will be noted
that there is effectively no overshoot when using the
LQR controller. Also, for the LQR controller, the
ship responds more quickly to achieve the zero
steady state error than that for PID and PD
controllers. Hence the superiority of the LQR
controller is demonstrated.
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CONCLUSION

An autopilot controller design for ship
manoeuvering has been investigated in this paper.
The modern approach of state space was chosen to
study the problem of directional control of ships.
The digital state space approach was extended by
considering LQR technique through the optimal
state feedback. The time interval, which is the
sampling duration, was chosen equal to 1 second.
This is due to the relatively slow dynamics of a large
container ship. Simulation results, applied to such
container ship, indicate that this digital LQR
controller type is a promising candidate for control of
ship heading and manoeuvering especially when
compared to the conventional PID and PD
controllers.

The ship model discussed here has been restricted
to a single input-output process without external
disturbances from waves and wind. Extending this
model with external disturbances may introduce
some additional difficulties in designing the autopilot
controller. This factor will be investigated in future
work.
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Appendix 1:

The coefficients of the matrices Am and b are:

3 (I,-N)Y -(mx;-Y
17

t)N v

L
12

A
“NO(Y,-muy) ~(mx - Y)(N, -mxqu,)
A >
2,,=0 ,

_(m “Y N, -(mx;-N)Y,

1

-

A

oo ST e

”tﬁfg%ﬁ

bf) g

(m-Y)N, -(mxo

v)Y

b,=

and

where A=(m-

’

A

b3"0,

Y)@,-N) - (mxg-N)(mxg-Y,) .
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