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ABSTRACT

The coupled Burgers’ equations are solved numerically by using new algorithm. It is based on SADI
( spline alternating direction implicit ) technique and linearized the nonlinear terms using Picard’s
method . The stability of the scheme is examined and the intermediate boundary conditions are
computed. Comparisons are made between the suggested algorithm and other al§orithms used for

solving the problem. The experimental results proved that the accurcy is of O(h

agreements with other results.

). and are in good
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1- INTRODUCTION

Coupled Burgers equations are used to model
hydrodynamical turbulence, shock waves as well as
wave process in nonlinear thermoelastic medium [1].
Several methods are described by Arminjon and
Beauchamp [2] to solve these equations including
the method of lines, a Runge-Kutta type treatment
and the use of finite-elements. Rubin and Graves [3]
used a spline alternating direction implicit method
(SADI) for solving linear equation. Jain and Raja [4]
used finite difference method and split the equations
to reduce the problem to a sequence of tri-diagonal
systems. Jain and Holla [5] used a sophisticated
. approach to the locally one dimension (LOD)
algorithm. The space partial derivatives are
eliminated by the help of cubic spline functions. Jain

and Lohar [6] employed a similar technique for’

solving the coupled nonlinear equations
ug + W3, + ), = “4u )R
L w0y )y = u )R
They ' ]iﬁcarizéd the nonlinear terms using

Newton’s technique. But Jain and Holla[5] overcame
this problem by dividing the splitting equations by

the components of the velocity u and v. This
method fails when any value of the components of
the velocity is vanished at any point of the net. ADI
method [7] for N-dimensional parabolic equation
with mixed derivatives is considered, the scheme is
less effective for higher dimensional problems, owing
to the proliferation of mixed derivatives. Behnia et
al. developed a stable fast marching scheme for the
solution of coupled parabolic partial differential

equations such as the Navier-Stokes[8]

In this paper, a mixed implicit-explicit two levels
algorithm is introduced for solving the coupled
Burgers’ equations, it is a combined approach of
linearization using the finite difference to remove
the time partial derivatives. The cubic spline
functions are used to approximate the spatial partial
derivatives. The algorithm ' includes the SADI
method as a special case . The stability of the
algorithm is examined for different values of the
parameters. Comparison i1s made with the SADI
algorithm and SLOD (spline locally one dimensional
method) [9]. Through the experimental results the
algorithm proved its superiority with respect to the
other algorithms.
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2-THE SUGGESTED ALGORITHM

We consider the coupled Burgers’ equations in two
dimensions

U, + UU+ U+ vuy = (u,,+u /R (1)

Vp + UV Uuy (""x+vyy)/R )]

For the numerical solution of these equations, let
u™& v(™ denote the values of u & v at the nt
iteration and u'9& v be the initial guess. Picard’s
approximation [10] is considered for equations (1) &
(2), then the result is,

ut(“*l) + (u ux)(“) + (vuy)(") =
1 1
(uxx(n+ ) + uyy(n+ ) 3)
v ™D 4 (u )™ 4 (vvy)(“) =

_E (vxx(m-l) + vyy(n+1)) 4)

(T T N )

The functions in the sequences {u™} (v} satisfy
the boundary conditions specified for u & v. The
~ linear convergence of the sequence ™} &{v{} to
~ the solution of the original nonlinear problem has
been established by Bellman and Kalaba [11]. The
sequences of the linear problems given by equations
(3) & (4) are solved by blending the finite
differences and the cubic spline polynomial function.
The tme denivative is approximated by the forward
differences and the space derivatives by the first and
second denvatives of the cubic spline function. For
computational work, we superimpose on

R{(xy,t) | 0 < x,y< Lt = 0}
t,=kA, 0 <k <m

x; = iAX, i = 0,1,.N

D 20

¥, = Ay, j=01,..N

where m, N are positive integers and N Ax = L.

The exact solution of u and v at the grid point
(x,y,t) = (iAx,jAy,kAt) is denoted by u; k while the
numerical value is designated by U’i-k In what
follow, we use the notations G, g1, M, l\'fl, Gl,.g M
and M1 for uxz, Uy, Uyy 5 Ugy, Vo5, Vi, Viy and v
For solving equation (3) using the mixed alternating
direction implicit method, we solve it at time level
k+.5 explicit with y implicit with x where it is solved
at time level k+1 explicit with x implicit with y. So
the equation takes the forms

(U)ED + 2 [(1-0y) Gy @+

6, Gij’ (n)] + (Vgl)ijk’(n) -

% [(1-6)M<@¥D 4 g M B+D]

_1_1{_ Mijk (n+1) 5)

WD+ LGy 1 (16;) (Ve

+ 6, (Vg - % Mij**,(ml) "

% [(1-6 Z)Mijj*’(n”) + 0, Mijk+l,(n+l)] (6)

where U',M*,Ml*and U” are the intermediate values
at time t y/) -

Combing equation (5) with the same for i-1 & i+1
and equation (6) with the same for j-1 & j+1 for the
given time levels. Approximating the time
denvatives with the forward differences and
eliminating the spatial derivatives with linear terms
using the spline relations [12]. One obtains
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(130, % ) Upy ;™D 4 (4 + 6 6, L)y e

c(1ap LIy, Sme
v (1-36 R)U1J 1+

1+1,

{1+3(1-6) iri } Upy 20D+ (4-6(1-6)

r ' r
= } Ui,jk,(n+1) + {1+3(1-6;) 2 } Ui+1,jk’(n+l)'
2 raxaey Uh -URD

2mm)

2@
01 { Ui+lj

UL N S veD s

4 (Vg™ + (Vg1 9 1+

At

= M li-l‘,j Kk,(n-1 )+4M 1 i,j‘k’(n+ 1 )+M 1 i+1’jk,(n-f-l)] 7

(1-36, T;-- ) Uy 0D 4 (4 4 66, % )

Uiy 39, % U, ., KD

L+

oW

{143(1-9, igi ) Uy ) 4 (4-6(1-6))x

r * (n+1 r * 1
= 10Uy De(143(1-6) it F gy g 0 e I
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AYG;; "™ + 4G+ G, ") —L—;—t [(1-6)x

{ngl)i,jq"(n) + 4V gl)i,j',(n) P gl)i’jﬂt,(n)}]_,_

92{(Vg1)i,j_1k+1’(n) + 4(Vg1)i,jk+1’(n) + (Vgl)i’j+1(k+1’(n)}l;

*(n+1) + 4Mi’j"(n+1) +Mi’j+1*'(n+1)] (8)

1,j-

At
At
* 2r Mija

where r = At/Ax?

In the same way when solving equation (4) using
the mixed explicit implicit method, we solve it at
time level k+0.5 explicit with x implicit with y
where it is solved explicit with y implicit with x at
time level k+1 as demonstrated in the following
equations

(Vt)ijk’(nH) + % [(1-03) _Q_l_ijk’(n) + 03 _G_lij*’(n)]
1
. (Ug)ijk,(n) - _li [(1_03)M_1_ijk,(n+l)

. 03 Mlij"(n+1)] % M_ijk,(n+l) )

1
R

(Vt);j*’(“”) - Glij”(") + (1-6,) (Ug )ij*’(n)

1
> 2L
+ 0, (Ug )rk”’(") -

% [a- 04) —M-ij*’(n+1)] + 04 _M_ijk+1,(n+l)] (10)

After approximating the time derivatives with the

‘forward differences and eliminating the spatial

derivatives with the help of cubic spline relations -
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[12], we obtain the following difference equations at
time levels k+ 0.5 and k+1

(1-36, i ) Vi1 D) 4 (4e66) %) v, e

I *
1-36;) — ) V.. S0 o
+ (1-363) = )

i,j+1

{ 143 (1-65) —;-) Vi 0D 4 (4601

L I
03) E }Vi’jk,(n+1) + 3(1_03) 'i'i }Vi’j+lk,(n+l)

L (@)
x §:Ay[(1 0,) (Ve - Vi) +

2*(n)

03Viju1 'Vi,j—l"(n)}]' — [(U ); ;o +4x

l]-

k(n)] + AE M.. k,(n+1)+

(Ug )™ + (Ug ) x M

l]+

4-M-i,jk’(n+1) +_M_i’j+1k,(n+1) ( 1)

and

k+1,(n+1) + (4+60

(1-394 — ) Vi, t) Vi,jkfl,,(n+1)

I YV, |, kelaeD) _

i,+1,j

+ (1-36,

{143 (1-6,) %) }Vig; D 4 (4-6(1-0,)x

D22 -

Iy e,

i+1,j

-IIE } VD (14 3(1-6)

_1_ At [Qli-l‘jt,(n) +4 _G_li’j"(n) & ﬂi+l,j"(")] &
At ) (Ug ) + 4 (U,
2 ) l-l,j = ~1,j

U g )l+1j (n) 0, {(U_g_ )i_l’jk+1,(n) +4 (U_&)a,jk”’(")

+ (Ug )iy O + 5‘ (M1 ;5D
+ AML D 4 My, e D) (12)

where 1 = At/Ay?

To investigate the stability of the scheme of
equation (1) represented in the two finite differences
equations (7) and (8), we use the Fourier method
and Von Neumann’s analysis [13] This method is
strictly applicable to linear equations. Equations (7)
and (8) are linearized by approximating the terms
which give nonlinarity, namely the valuable
functions

which are approximated as follows

U; =AU

l]’

Vgli,js = IB,YUUS and Gijs = IZAﬁ Uljs

where A = max { IUIS [,i,j=1,...,N+1
ijs

and s = k.k+.5 and k+1}

B= max{] N+1

ijs

and s = k,k+.5 and k+1},
B,y are Fourier vanable w.r.t. x and y and axes

3 . .
Vi,i|’1’3=1""’

respectively and I = /-1
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The above approximation using the maximum
values for the function and its pam'al derivatives
times the valuable function, results in obtammg the
most probable amplification factor.

The amplification factor of the general Fourier
component U between the two successive time
levels k and k+1 is given by ¥, ¥, where

Y, = Ay-IAy, =Bu‘Isz
= Ay+TAy' "% By+IB,’

Ay =1{2+6(1-8) '1r'i} cos (8 Ax)

+4-6 (1-9 _r_} --Y—2 At{2+cos (8 Ax)}
L RiR :
A12 = yAt B{2+ cos (8 Ax)}+

% rAx A(1-8,) sin (8 Ax),

r

Ay =12-686, iti beos (8 Ax) + 456, =

Ay, = % rAx A 6, sin (8 Ax),

T

By =2+ 61(1—0_2) % '} cos (y Ay)+4-6 (1-0?) -

BZ -
25 At { 2+ cos (y Ay)}

Sy
ahy.

By, = ﬁAé A(Z2+cos(yAy)} + AtyB (1-6,){2+cos (yAy)},

B,, = {2-60, —lri } cos ('y‘ Ay) + 4+66, % -and
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By, = yAtB6, {2+cos (y Ay)}

Hence ¥, >1 and ¥, >1 at §; and 6, = 0.5. i.e. the
mixed explicit implicit scheme is unstable. But ¥,
< 1 and ¥, <1 at 6; and 6, = 1 ie. the spline
alternating direction implicit scheme is stable.

The same steps are followed when examining the
stability of the scheme of equation (2) represented
in the two equations(11) and (12), the scheme is
stable when 6, and 6, =1. Finally, we conclude that
SADI spline alternating direction implicit scheme is
unconditionally stable.

3- THE INTERMEDIATE BOUNDARY
CONDITIONS

The value of U" is not necessary a good
approximation to the solution, it is obtained in terms
of the boundary conditions at the time t=k*At and
t = (k+1)* At. Therefore, after taking 6, and 6, =1 at
equations (4) & (5) and approximating the time
partial derivative by the finite difference the
intermediate is given by

U"+U"“)+ (Ml“ M1¥1) +
ussl (13)
SHveD* -vgh¥)

and (10) the
is obtained

Similarly from equations (9)
intermediate boundary condition v
from

(V“+v**‘)+ - M) +
ve=l (14)
At k+1
- () g

4- EXPERIMENTAL RESULTS

Example 1

Consider the coupled Burgers’ equations in the
domain
D={xyt):0<x<10<y<l,
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t > 0}
with the initial condition
u(x,y,0) = sin(wx) sin(xy)
v(X,y,0={sin(wx)+sin(2ax)}{sin(7y)
+sin(27y)}

and the boundary conditions
u(0,y,t)=u(1,y,t)=u(x,0,t)=u(x,1,t)= 0.
v(0,y,t)=v(1,y,0)=v(x,0,t)=v(x,1,t)= 0.

Table 1. The values of u and v computed by the
SLOD at R=1, t=.01.

Points The velocity u

N=20 40 =80

At=1/1500 At=1/2000 At=1/3000
(1.1 .07280 .07283 .07285
(2,.8) 27560 27563 27568
(4,4) 72262 72271 72285
(7..1) 20415 20422 20427
(.9,.9) .07751 07751 .07753
Points The velocity v

(1,1) 43052 43170 43206
(2,8) |-12472  -12664  -12714
(4,4) §1.63624 163952  1.64061
(7,.1) 06430 06332 .06309
(.9,.9) 01319 01340 01346

Table 2. The values of u and v computed by the
SADI at R=1, t=.01

Points The velocity u

N=20 N=40 N=80

At=1/1500 At=1/2000 At=1/3000
(1,.1) | 07247 07250 07252
(2,8) | 27753 27757 27764
(4.4) 1+ 72150 72165 72185
gg»ég 20469 20476 20482
e 07943 07945 07948
Points The velocity v
(1,.1) } 42956 43079 43116

- 12177 -12372  -.12423
(2,8) | 1.64803 165145  1.65267
g;y?; 06807 06713 06690
e 01312 01335 01340

D 24

Table 3. The values of u and v computed by the
finite element [2] at R=1, t=.01

Points The velocity u

N=20 N=40 N=80

At=1/1500 At=1/2000 At=1/3000
(1,.1) | 07257 07252 07251
(2.8) | 28842 28835 28833
(4.4) | 712211 72179 72171
(7.1 20117 20107 20104
(99§ 07947 07946 07946
Points The velocity v
(1,1) | 43357 43178 43132
(2,8) {-12366 -.12180 -12131
(4,4) 1165499 165316 1.65270
(7D} 06621 06692 06711
(991 01367 01349 01344

Table 4. The values of u and v computed by the
method of lines[2] at R=1,t=0.01

Points “The velocity u

N=20 N=40 N=80

At=1/1500 At=1/2000 At=1/3000
(1.1) |.07277 07257 07253
(2,8) | 28887 28846 .28836
(4.4) | 72315 72205 72178
c7”;) 20139 20112 20106
9 | 07956 07948 07947
Points The velocity v
(1,.1) 43857 143302 43173
(2,.8) -.13200 -.12387 -.12184
(-4,.4) 1.66509 1.65571 1.65335
(7,1) 06137 06571 06679
(:9,.9) .01459 01371 01349

Tables (1-4) show the numerical results for the
problem with the boundary and initial conditions as
in example 1, the constants Dt and N are the same
for Tables (1-3), the results due to SADI are in good
agreement with that of SLOD . Also, one can
deduce that the variations in u and v at certain time
for different values of N are small for SADI when
compared with that of SLOD. The constants Dt and
N in table 4 are not the same as in tables 1-3. The
numerical results of lines method are more close to
the finite elements methods. To estimate the
accurcy of the algorithms, the ratio
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U,-U
Ru=‘U——2h

algonthms as in table 5

1s computed for the different

Table S.
Ratio points SADI SLOD F. elem. M. of lines
Ry (1,.1) 1.442 1.640 3.743 5.146
R, (2,.8) | 0561 | 0.543 4.445 4.193
R, (4,4) | 0781 | 0658 | 3.875 4.047
Ry (7,.1) 1.242 1.316 3.879 4.206
R. (9,9) | 0939 ] 0294 | 4086 4311
Ry J Gls1) 3.270 3.276 3.808 4.304
Ry (2,.8) 3.843 3.891 3.807 4.014
Ry (4,.4) 2.785 3.012 3977 3.974
R, (7,.1) 4214 4.282 3.742 3.984
Ry (9:9) 3.900 3.879 3.544 4.070

If we assume that the accurcy of U is of O(hP),
theoretically R =2P, then the accurcy of the different
algorithms are of O(h®. The method of lines is
based on approximating the spatial denvatlves with
the five difference points (accurcy is in O(h ).) and
the PDE is transformed to first order ODE . It is
solved usmg forth order Runge Kutta’s method
(accurcy is of O(AtY). The computed ratio proved
that the accurcy is of O(h%). The solution with the
spline technique may be concidered as bicubic
surface, therefore we compute the solutions at the
discrete points of the mesh as well as other points if
we need. Figures (1) are two dimensional graphs,
they show the variations of the two components u
and v at y = 0.2,0.4,0.6 and 0.8 The steady state
solution 1s attained at t = 0.05 . Figures (2). are 3D
graphs, they show the variation of the solution at
different times

Example 2

Consider the coupled Burgers’ equations in the
domain
D = {(x,y,t): 0 < x <0.5,0 <y<0.5,
t> 0}
with the initial conditions
u(x,y,0) = sin(xx)+ cos(zry)&
v(x,y,0) = x+y

Alexandria Engineering Journal, Vol. 36, No. 2, March 1997

and the boundary conditions
u(0,y,t)=cos(ry),

v(0,y,0)=y,.
u(0.5,y,t)=1+cos(my),
v(0.5,y,t)= 0.5+y,
u(x,0,t)=1+sin(7x),

v(x,0,t) = X,
u(x,0.5,t)=sin(7x)

and v(x,0.5,t)=x+0.5

Tables (6) and (7) display the numerical results for
the boundary and initial conditions of example 2, the
results are in good agreement with the different
methods as reported before in examplel. Figures (3)
are two dimensional graphs, they show the variations
of the two components u and v at at different values
of y. The steady state solution is attained at t =
0.625. Figures (4). are 3D graphs, they show the
variation of the solution at different times

Table 6. The values of u and v computed by the
method of Jain and Holla at R=500, h =.5/N and

t = 0.625.

Points The velocity u
N=20, N=40,
r=20 r=80

(.05,.1) 95435 95479

(15,.1) 95691 96066

(3:1) 95616 96852

(4.1 95895 96849

(1£2) 84257 84104

(-2-22) 86399 86866

(.35,.2) 87750 89158

(.1,.3) 67667 67792

(3.,3) 76876 77254

(4,3) 79202 79670

(.05,.4) 41825 42468

(.15,.4) .54408 .54543

(2,4 58778 58564

Points The velocity v

(05,1) | 09843  .09468
(15,.1) | .10177  .08612
(3.1 #3287 - 07712
(4,1) |.18693 07855
(1,2) |.18503  .17828
(2,2) |.18169  .16202
(35.2) | 21068  .14469
(1,3) | .26560 26094
(3.3) | 25142 21542
(4,3) | 28368 20110
(05,4) | 36276 35870
(15,4) | 32084 31360
(2,4) | 30927 29776
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Table 7. The values of u and v computed by the
method of SLOD and the suggested method SADI
at R = 500, h =.5/N and t = 0.625.

Points The velocity u
SLOD SADI SLOD SADI
N=30 N=30 N=60 N=60
" r=5 r=S5 r=9 r=9
(.05,.1) 95462 95478 95466 .95478
(.15,.1) 96057 .96070 96062 .96072
(3..1) 96869 .96872 96889 .96892
(4,.1) 98108 .98043 98102 .98072
(1,2) 84355 .84425 .84375 .84427
(2,.2) .86843 86900 .86859 .86903
(.35.2) 89439 85484 .89453 .89488
(.1,.3) 67685 .67843 67729 67846
(3,.3) 77274 77374 77304 77380
(4,3) 80339 .80421 .80363 .80426
(.05,.4) 42232 42558 142324 42563
(.15,.4) 54472 .54688 54535 .54695
(2,.4) 58529 .58718 .58584 .58726
Points The velocity v
(.05,.1) 09489 .09489 09493 .09493
(.15,.1) 08639 .08639 08642 08642
(3:1) 07682 .07671 07685 .07678
(4,.1) 07605 .07367 07393 07362
(.1,2) 17859 .17861 17866 .17868
(2,2) 16237 .16239 16243  .16245
(.35,.2) 14352 .14354 . .14357 .14359
(.1,.3) 26120 26128 26133 .26140
(3.3) 21581 .21590 21590 .21597
(4,3) 20016 .20022 20021 .20027
(.05,.4) 35842 .35869 35868 .35889
(.15,.4) 31385 31414 31405 31428
(2,.4) 29814 29840 29832 .29853

5. CONCLUSION

Firstly, a mixed explicit- implicit scheme is
introduced with four parameters for solving the
coupled Burgers’ equations. The spatial denvatives
are approximated by the cubic spline functions and
the time derivatives are eliminated using the Crank
Nicolson method, the nonlinear terms are linearized
by Picard’s method. The stability of the scheme is
tested , it is unstable when 1 = 0, 0.5 and i=1..4 and
it is stable when transformed to the alternating
direction implicit technique. The intermediate
boundary conditions are computed . When refining
the mesh, the experimental results proved that the
accuracy of the scheme is in O(hz).
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