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\BSTRACT

- This paper introduces a simple approach for absolute minimization for a single-output function. The

approach is based on the classic approach; it consists of finding all the prime implicants of the
function and selecting a set of them as a minimum sum of the function. Unlike
Quine-McCluskey(Q-M)[2], the minterms are tabulated in their natural order. N passes are required
for a function of N variables. Finding the prime implicants of the given function is based on
partitioning the problem into smaller problems. In pass one, the problem is partitioned into 2n-1)
problems of 2! minterms. Pass one finds the prime im licants for all these problems. In general, the
output of pass (i-1) is input to pass i which solves 2'™V problems of 2! minterms. Consensus and
subsumption operations are applied to get the prime implicants for each subproblem. Selecting the
prime implicants does not need the prime implicant table; a smaller table called minterm table is
used. It saves space in memory. Comparing our approach with the classic approaches results in the
following: 1) natural order of minterms is required. 2) it introduces far fewer number of comparisons
than that of Q-M. 3) it consumes less space in memory 4) far fewer number of repeated clauses are

generated. .

[. INTRODUCTION

This paper addresses the problem of the
minimization of switching functions. For few number
of variables, Karnaugh map [26] can be used. For six
or higher number of variables, several minimization
procedures have been introduced. These procedures
- can be classified as follows:

1. with respect to generation of prime implicants:

a. classic procedures that consist of generating
all the prime implicants, then finding the
minimum representation of the function
[6,8,9,30]. ‘

'b. procedures that generate only the necessary

~ prime implicants [10-12].

2. with respect to efficiency

a. procedures ' for finding minimum
representation {9,10,30].

b. procedures for finding all/some irredundant
normal forms [6,8,12].

3. with respect to form of input

a. minterms m; where f(m;)=1 or x (don’t
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care) [10,11,30].
b. an algebraic expression representing the
function [6-9,12].

Our approach is a modification of the classic
approaches for absolute minimization. The classic
approach enhances each step separately. ie. it is
required to efficiently find all prime implicants, and
then to efficiently select a set of prime implicants for
absolute minimization. Finding the prime implicants
of a function is an important point in its own.
Several papers addressed only this problem
[4,7,13-18,26]. [4,7,16-18,26] require the minterms
representing the functon as input, while [13-15]
require an algebraic representation of the function
and treat the problem algebraically. [16,17] solve the
problem numerically while [4,18] use tabular
methods. [7] solves it by recursively applying the
so-called Pi operator and [26] by applying the sharp
operator. The most popular classic approach is the
tabular method by Quine-McCluskey [2]. Their
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method leads to the generation of many repeated
implicants(clauses) which consumes time and space.
This problem was solved by Hwa’s approach [4], but
its drawback is the large number of comparisons
between rows of adjacent groups. Morreale’s
algorithm [6] also avoids generating repeated clauses.
Its drawback is the time elapsed to perform
nonexhaustive search to get the pair of implicants
that are reducible.

In this paper, the function’s minterms are treated
in their natural order. Comparisons between rows are
applied in smaller domain as the problem is
partitioned into subproblems. The final results are
obtained by applying the Consensus operation to the
results of the subproblems. This approach reduces
the generation of repeated clauses to a large extent.
The second step is also addressed separately in the
literature [19-23,26-28). [19,20,22,27,28] find the
absolute minimization of the function.,while [23]
finds the near-min representation of it [21]
generates the set of irredundant normal forms. Most
of them [20-23] use tabular method to get the
solution while [19] uses integer programming. [27,28]
solve it algebraically. Roth’salgorithm [26] uses sharp
operator to get essential prime implicant and then
finds an irredundant cover of the function. It can
also find a min-cost representation. In our approach,
a small table called minterm table is used. The
tabular representation proposed by [3] is adopted
with some modifications. The rest of the paper will
be as follows: section II introduces basic definitions.
Section IIl presents the proposed approach and
section IV is for the conclusion.

II. BASIC DEFINITIONS

Consensus operation (first proposed by Quine
[1,26]):

Let P; and P, be two product terms of a function
such that there exists one and only one variable x;
which is complemented in one product term and
uncomplemented in the other. Let Q; and Q, be the
product terms P, and P, respectively, after
eliminating x; and ;‘_1 from them, then the consensus

of P; and P,=(Q; AND Q,).

Subsumption operation [5]:

It is the application of the following theorems:

X+X=X
X+Xy=X

Tabular Representation of a function [3,5]:
A function of n variables represented in a su
product terms can be represented in an n-col
table of rows. Each row represents a product @
and each column corresponds to a variable.
product term is represented as follows: column
0,1 or - for complemented, uncomplemented
absent variables.

Consensus and subsumption in tabular form [5]:

1. Let A and B be two rows. Let a;, b; denote
the elements in column i in A and B
respectively. The consensus of A and B if
found, is row C, where element c; in
column 1 can be found as follows:

if ai-bi then Ci'ai
if az= - then c;=b;

else if b= - then c;=3,
if a;= b, then c¢;= -
Example: let A be 00-00 and B be 0001-, then C
is 000-0. i

2. A row A subsumes another row B if for
each column bi*-’ai'bi- The subsuming

row 1s eliminated.

Iterative consensus:

Let f(x{,X;,....x,) be a function represented in a sum

of product form. ie. g_ where s is the
f 2-1 Pi

number of product terms. Iterative consensus
method is to iteratively apply both consensus and
consumption to each pair of products in f with the
addition of any new terms to f. The application of
iterative consensus (denoted it-con(f)) results in all
prime implicants of f as proposed by McCluskey [25]
and Dietmeyer [26]. Let PI(f) denotes the set of all

pnme implicants of f, then »PI(f)==it-00n(2.1 P)

Sharp product [26]:
The sharp product of two cubes A and B finds the
minterms (vertices) of A not included in B. In this
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iper, sharp product(denoted by #) is applied, as
fined by Trabado et. al [3], with separation.
paration means that if the answer consists of more
an one row, overlapping is eliminated. Example:
¢t A=--10, and B=001- then A#B={1-10,0110}

L. THE PROPOSED APPROACH

The approach consists of two steps; generation of
,; pime implicants, and selection of prime
mplicants that form the minimized function. The
irst step is solved by partitioning the problem into
maller prob]cms In pass one, the problem 1s
partitioned into 2"V problems of 2! minterms. Pass
one finds the prime implicants for all these
pioblems. In general, the output of pass (i-1) is input
_u  pass i which solves 20D problems of 2! minterms.
Consensus and subsumption operations are applied
to get the prime implicants for each subproblem.

eorem 1

PI(f)=it-con(PI(x,f(0,x,,...x ) +PI(x f(1,x,,...,X )))
Proof-

By Shannon’s expansion theorem [24]:

f=x,f(0.x,,...x ) +x,f(1,x,,...x ). i.e. f can be
represented by two subfunctions. Each subfunction
can be expressed as a sum of all its prime implicants.

So, f=PI(x,f(0,x,,...x))+PI(x,f(1,x,,...X.)). Applying
the iterative consensus results in the prime
‘lmphcants of the ongmal function [25]. ie.

PI(f)-lt—con(PI(x f(O,xz, X)) +PI(x, f(1,%,,..,x ))).
" This means that the problem of finding all prime
implicants of fis partitioned into two subproblems of
finding prime implicants and the application of
“it-con operator to the two sets of prime implicants.
In this case, a product term of one set is not
“required to be compared with other ones in the
- same set which saves time. This partitioning can be
repeated recursively. i.e. partitioning each of the
“smaller problems into two smaller ones and so on.
The last partiion leads to finding the prime
‘implicants of 2(n-D) problems each having 2!
_minterms. which is trivial.
[ =It hds to.be noted that this idea is a form of a
generalized consensus first proposed by Tison [8].
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Theorem 2

Let f=f;+f, as defined above by Shannon’s
expansion theorem, where f represents the original
function or any intermediate subfunction. Let
PI(f)={A,....A;} and PI(fZ)s{Bl, .B } If consensus of
two terms A; and B, results in a new term C, ,then
applying consensus of C; with any elements in
PI(f;), PI(f)) or any new generated term Wlll not
result in any new terms.

Proof:
Let A, be on the form y;y,..y,0**..* and let B; be on
the form y,y,..y 1**..* where variable y; can be
either 0 or 1 and * stands for 0,1, or -. Let C; be the
consensus of two terms A; and B.. Then Ck will be
on the form V1Yo Y e * Consider the following
three cases:

1. Consensus of any element of f; and C, if
possible, results in a term on the form
V1Y2-¥,0**..* which ,by definition of A;, is an
implicant or prime implicant of f;.

2. Similarly the consensus of an element of f,
and C, does not generate any new term.

3. If the consensus operation between C; and
any new term C,., which will be in the form
V1YY, **..* results in a term, then, by
definition of consensus, there must exist one
and only one column having a value 1 in one
term and O in the other. i.e. without loss of
generality, C, and C,, will be in the form
¥1Y2-¥-*0..* and y,y,.y-*1.* respectively.
The consensus will be in the form
Y1Y2--¥-*---* This term is not new as it can
result from the consensus of the following
terms y,y,.y,0%-.* and y;y,.y,1*-.* that
belong to f; and f, respectively. This imply
that consensus of any pair of new terms does
not generate a new one.

Algorithm:

First, to get all prime implicants of a function
f(x4,%0,-%), 2™ tables are constructed, where table
(1) contains a row representing minterm m; if m; is a
true/don’t care minterm of the function, otherwise it
contains NULL. To obtain all prime implicants, n
passes are performed. Each pass combines the
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tables in pairs such that table(i) is combined with
table(i+1), 1=0,2,... The combination operation
‘generates all possible prime implicants with respect
to the minterms covered by the involved tables. For
 example, if T(1) contains {00-00} and T(2) contains
{0001-} -the dash denotes don’t care- then the
generated table T(12)={000-0,00-00,00010}. Pass n
ends with one table containing all possible prime
- implicants.

Example: f(x,y,z)={0,1,2,3,4,5,7}

initially | pass 1| pass 2| pass 3
000 00- 0-- -1
001 01- 1-1 -0-
010 10- 10- 0--
011 111
100
101

NULL
111

tables

" 1.e. the prime implicants are z,?,;.

It has to be noted that NULL tables can be
eliminated. In this case, each table is assigned a
number corresponding to the partition it represents
such that table 1 and the next table (table j) can be
combined in Eass k if and only if j-i=2%"DV that is
multple of 2%. #

This approach is simpler than that of Q-M which
performs the same number of passes but in pass i,
the method generates all possible cubes composed of
2' minterms.  i.e. if there exists a cube of 2¥
minterms, the method generates rl rows where
r]==k*{2(k'1)+2(k’2)+...+21}+1 while our * method
generates only r2 rows where 12 = 2Dy 2(k2)
+.+2141. ie. rluaksr2 which reduces our tables
compared to that of Q-M.

Selecting the prime implicants is performed
without the need to construct the prime implicant
table. This can be done by recursively selecting the
essential prime implicants -using a smaller table-
then applying the sharp operation between each
prime implicant and each of the essential ones to
reduce the number of prime implicants if possible.

B 72

The steps can be summarized as follows:

Applying this sequence recursively leads to
minimum representation of the function.

Let DC denotes the set of don’t care minterms.
TI denotes the initial table which contains the set|
all prime implicants.

1. Construct a small table which has three rows;
MINTERM (as index), COVER, and FLAG.
Assign a column to each true minterm.

2. For each prime implicants P, mark
FLAG(minterm) and let COVER(minterm)=P
for minterms that P covers.

When collision occurs, unmark FLAG(minterm)
where collision occurs and let
COVER(minterm)=P. If a prime implicant is
found to cover no minterm in the table, then it
contains only don’t care minterms, remove it from
the set of prime implicants.

3. For the marked minterms, the COVER entry
refer to an essential prime implicant. Add the
minterms of them to DC.

4. If no essential prime implicant exists, exit
(cyclic case). Otherwise, write all essential
prime implicant in a separate table (TE) and
eliminate them from the initial table (T1).

5. Apply the sharp operation to eliminate all
minterms in DC from TI. Find the cost of
each prime Implicant in TL

6. If a row A of TI covers row B (the set of
minterms of B is subset of that of A) and
cost(A)<=cost (B), eliminate B. The problem
now is reduced to a smaller one with less
number of minterms.

7. Go to step 1.

A cyclic case is discovered if TE is NULL. In this
case, some condition must be added to enforce a
prime implicant to be added to TE. Otherwise
Branching or Petrick’s algorithm can be used [29].

It has to be noted that the sharp operation may
lead to splitting a prime implicant into more than
one row constituting the minterms that have not
been covered yet. So, an identifier must be
associated with each prime implicant (assigned to
each row of it). Each group of rows having the same
identifier are treated as an entity.
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ing for partitionabilisy:

hrough determining essential prime implicants,
 problem is tested for partitionability. i.e. the
me implicants may be divided into disjoint sets
\:that every set covers a set S; of minterms where
,=f and NS,=¢. In this case, the problem is
t uoned into several subproblcms The required
pression is the sum of expressions resulting from
ving these subproblems.

‘or large problems, the partitioning approach can
pplled recursively. The algorithm for partitioning
 problem can be summarized as follows:

1 table do the

ﬁet the next prime implicant (P).

,Set a NULL identifier to it.

for each of its minterms: If FLAG(minterm) is

unmarked and identifier(P)=NULL, set a new

identifier to P. If FLAG(minterm) is marked,

“then let id-cover=identifier (COVER(minterm)).

Let identifier(p) =id -covervp where identifier(p)
identifier(P).

» Atend, each group of prime implicants having an
‘equal 1dentifier constitute a set. The

corresponding set of minterms is the union of all

' their minterms.

V. CONCLUSION

he partitioning approach is introduced to obtain
| minimum representation of a
function(with/without don’t care’s) using tabular
fepresentation. It is a simple and efficient technique
over many techniques in the literature. Minterms are
used in their natural order. The approach reduces
the generation of repeated clauses to a large extent.
Also, the usage of consensus operation results in
the generation of the smallest number of implicants
(edges, faces, cubes,.etc.) that are necessary in
generating a prime implicant. The principle of
partitioning the second step of the problem ,if
possible, may greatly affect the complexity of the
problem.

REFERENCES

‘[l AR. Meo, "On the Determination of the

[2]
[3]

(4]

(5]

(6]

[7]

(8]

91

[10]

[11]

[12]

Alexandria Engineering Journal, Vol. 36, No. 2, March 1997

ABOU-HADEED: Minimization of Switching Functions

ps Maximal Implicants of a Switching
Function", IEEE Trans. on Elect. Comp.
vol. EC-14, no. 6, pp. 830-840, Dec.
1965.

Richard S. Sandige, Modern Logic Design,
McGraw-Hill Int’l Editions, 1990.

PP. Trabado and A. Lions-Ruis,
"Solution of Switching Equations Based
on a Tabular Algebra", IEEE Trans. on
Comp., vol. 42, no. 5, pp. 591-596, May
1993.

H.R. Hwa, "A Method for Generating
Prime Implicants of a Boolean
Expression", IEEE Trans. On Comp., vol.
C-23, no. 6, pp. 637-641, June 1974.
M.P. Marcus, :Switching Circuits for
Engineers", 3rd edition, PrenticHall of
India, New delhi, 1975.

E. Morreale, "Recursive Operators for
Prime Implicant and Irredundant Normal
Form Determination", IEEE Trans. on
Comp. vol. C-19, no. 6, pp. 504-509, June
1970.

M. Ikram and D.A. Roy, "A Simple
Technique to Improve the Pi-Algorithm
for Prime Implicant Determination", JEEE
Trans. on Comp., vol C-25, no 11, pp.
1184-1187, Nov. 1976.

P. Tison, "Generalization of Consensus
Theory and Application to the
Minimization of Boolean Functions",
IEEE Trans. on Elect. Comp., vol. EC-16,
no. 4, pp. 446456, Aug. 1967.

J.R. Slagle, C.-L. Chang and R.C.T. Lee,
"A New Algorithm for Generating Prime
Implicants", IEEE Trans. on Comp., vol.
C-19, no. 4, pp. 304-310, Apr. 1970.

V.T. Rhyne, P.S. Noe, M.H. Mckinney,
and U.W. Pooch, "A New Technique for
the Fast Minimizaton of Switching
Functions", IEEE Trans. on Comp., vol.
C-26, no. 8, pp. 757-764, Aug. 1977.

H.A. Curts, "Adjacency Table Method
of Deriving Minimal Sums", IEEE Trans.
on Comp., vol. C-26, no. 11, pp.
1136-1141, Nov. 1977 .

D.M.Y. Chang and T.H. Mott, Jr.
"Computing Irredundant Normal Forms

B73



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B74

ABOU-HADEED: Minimization of Switching Functions - .

from Abbreviated Presence Functions"
IEEE Trans on Elect. Comp. vol. EC-14,
no. 3, pp. 335-342, June 1965.

J.G. Bredeson and P.T. Hulina,

- "Generation  of Prime Implicants by

Direct Multiplication", IEEE Trans. on
Comp., vol. C-20, no. 4, pp. 475-476,
Apr. 1971.

S.R. Das and N.S. Khabra,
"Clause-Column Table Approach for
generating All the Prime Implicants of
Switching Functions", IEEE Trans. on
Comp., vol. C-21, no. 11 ,pp 1239-1246,
Nov. 1972.

B.L. Hulme and R.B. Worrell, "A Prime
Implicant Algorithm with Factoring",
IEEE Trans. on Comp., vol. C-24, no. 11,
pp- 1129-1131, Nov. 1975.

N.N. Necula,"”A Numerical Procedure
for Determination of the Prime
Implicants of a Boolean Function", IEEE
Trans. on Elect. Comp. vol. EC-16, no. 5,
pp. 687-689, Oct. 1967.

A. Svoboda, "Ordering of Implicants"
IEEE Trans. on Elect. Comp. vol. EC-16,
no. 1, pp. 100-105, Feb. 1967.

E. Morreale, "Partitioned List
Algorithms for Prime Implicant
Determination from Cannical Forms",
IEEE Trans. on Elect. Comp. vol. EC-16,
no. 5, pp. 611-620, Oct. 1967.

F. Luccio, "A Method for the selection
of Prime Implicants", IEEE Trans. on

* Elect. Comp., vol. EC-15, no. 2, pp.

205-212, Apr. 1966. _

S.U. Robinson III and R.W. House,
"Gimpel’s Reduction Technique
Extended to the Covering Problem with
Costs", IEEE Trans. on Elect. Comp. vol.
EC-16, no. 4, pp. 509-514, Aug. 1967.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

V. Bubenik, "Weighting Method for the
Determination of the Irredundant Set of
Prime Implicants", IEEE Trans. on
Comp., vol. C-21, no. 12, pp. 1449-1451,
Dec. 1972.

J.F. Gimpel, "A Reduction Technique
for Prime Implicant Tables", IEEE
Trans. on Elect. Comp. vol. EC-14, no.
4, pp. 535-541, Aug. 1965. s
S.R. Das, "An approach for Simplifying
Switching Functions by Uulizing the
Cover Table Representation", IEEE
Trans. on Comp. vol. C-20, no 3, pp.
355-359, Mar. 1971. »
A.D. Friedman, Logical Design of Digital
Systems, Pitman, 1975.

JM. Mage, "Application of iterative
Consensus to Multiple-Output
Functions", IEEE Trans. on Comp. vol.
C-19, no. 4, pp. 359, Apr. 1970.

D.L. Dietmeyer, "Logical Design of
Digital Systems", 2nd ed., Allyn and
Bacon, 1978.

S.J. Hong and S. Muroga, "Absolute
Minimization of Completely Specified
Switching Functions", IEEE Trans. on
Comp. vol. 40, no. 1, pp. 53-65, Jan.
1991.

R.B. Cutler and S. Muroga, "Derivation
of Minimal Sums for Completely
Specified Functions", IEEE Trans. on
Comp. vol. C-36, no. 3, pp. 277-292,
Mar. 1987."

F.J. Hill and G.R. Peterson, Introduction
to Switching Theory and Logical Design,
John Wiley & Sons, Inc, 1968.

N.N. Biswas, "Minimization of Boolean
functions", IEEE Trans. on Comp., vol.
C-20, no. 8, pp. 925-929, Aug. 1971.

Alexandria Engineering Journal, Vol. 36, No. 2, March 1997




