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ABSTRACT

An approximate analytic solution for the transient temperature distribution in a solid cylinder subject
to both convective heat transfer and radiative heat exchange at the surface is obtained by using the
finite integral transform technique. The analytical solution is obtained as an infinite series. However,
inclusion of the first 15 terms of the series was found to be sufficient to obtain reasonable accuracy.
The results obtained from this analytic solution are compared with those obtained from a numerical
solution developed using an explicit finite difference method (which is a conventional method used

to solve such class of nonlinear problems).
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1- INTRODUCTION

Heat conduction problems with nonlinear boundary
conditions arise in many practical situations [1-4]. In
particular, the nonlinear boundary condition appears
in combustion systems [2], where in the pre-ignition
heating, the particle entering a furnace and traveling
toward a flame front receives heat uniformly by
thermal radiation from the furnace walls and loses
heat uniformly by convection to the surrounding

gases. It appears also in flash heating of powdered

solids in mineral processing industries. [3], where
particles are heated by convection and as their
temperature rises they begin loose heat by thermal
radiation. In nuclear technology, heat transfer is
dominated by boiling, thermal radiation and forced
convection [1, 4]; therefore the heat transfer
coefficients depend on the surface temperature and
thus the boundary conditions become nonlinear.

The analytic solutions obtained from nonlinear heat
conduction problems differ significantly from
solutions
linearized problems. Unfortunately, few analytic
solutions for nonlinear cases of heat conduction have
appeared. The inherent nonlinearity of these
problems has limited analytical investigations to
extremely simplified cases [5, 6].

The finite integral transform technique has been

obtained from the, by assumption,

applied to nonlinear heat conduction problems with
variable thermal conductivity [7, 8], and then applied
to nonlinear diffusion equations In cartesian
coordinates [9]. However, the technique has not
been yet applied to heat conduction problems with
nonlinear boundary conditions in cylindrical
coordinates.

Heat conduction in cylindrical coordinates is a
problem of great interest. It appears in many
engineering applications such as nuclear engineering,
rocket walls, boilers and metal forming processes.
However, this problem is frequently treated using
numerical techniques [10, 11].

In this paper, a methodology based on the finite
integral transform is extended to solve the problem
of heat conduction in cylindrical coordinates subject
to nonlinear boundary conditions resulting from a
coupled convection and radiation exchange at the
surface according to the fourth power law. The finite
integral transform solution 1s the summation of an
infinite series, and only a finite number of terms are
taken for obtaining this solution; therefore, these
finite number of terms which can be used for
obtaining a reasonable accuracy of solution are
deduced. The results obtained from this
methodology are then compared with those obtained
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from a numerical solution developed by applying an
explicit finite difference method.

2- PROBLEM DESCRIPTION:

A solid cylinder 0<r<b is initially at a uniform
temperature T, throughout the solid. For times t>0,
the boundary surface at r = b dissipates heat by
convection into a medium maintained at temperature
T, and having a heat transfer coefficient h. At the
same time, there is heat exchange by radiation
between the surface and the enclosure which is
maintained at T, . The convection coefficient h,
surface emissivity € , and the thermophysical
properties of the solid are assumed invarant. Finally,
it 1s assumed that the temperature remains finite at
r = 0 (which is a trivial condition).

The mathematical formulation of this transient heat
conduction problem may be described by the
following partial differential equation:

2
Q T(r,t) +1 dT(r,t _ 1 9T(r,¢) Gaveh; to )
or? r or [ 4 ot

subject to the following boundary condition:
-k 9%(-:—'9 (TG, 8 -T.) = 06 (T, 0 ~T',r=b,t>0 (2a)

and the initial condition:
T(r,t) = T, 0<r<b, t=0 (2b)

where o, k and ¢ are the thermal diffusivity, thermal

conductivity and the Stefan-Boltzmann constant,
respectively.

It is more convenient to work in terms of the

following dimensionless quantities:

n = 1,1:=-5-t-, and 6 (9,7) =

T
b b? q

o
Introducing these dimensionless quantities into
equations (1) and (2), we obtain the following system

of equations governing the dimensionless
temperature distribution:

D 32

Fo(n,7) , 130(,t _BM,T) ooy <1 (3)
an2 1 a'r] ot g

subject to the following dimensionless condition:

—Qg%ﬁ-ae(n,mn(n,r,e), =150 (@
and the dimensionless initial condition:
8(n,7)=1, 0<91,7=0 (4b)
where,
3
4 oeT b
I(n,t,0)=Q[6*(M,7)-61-p6_,Q = s
T T
B:.l}.h’e.‘z._.’andee= i
k T, T,

An analytical solution for the above dimensionless
differential equation subject to the displayed
dimensionless auxiliary conditions is developed in
the following using the finite integral transform
method.

3- FINITE INTEGRAL TRANSFORM
SOLUTION:

In the finite integral transform technique, the
integral transform pair needed for the solution of a
given problem 1is developed by considering
representation of an arbitrary function in terms of
the eigenfunctions corresponding to the given
eigenvalue problem. Obtaining the required

~ eigenvalue problem may be accomplished by

considering the homogeneous part of the
nonhomogeneous field equation and then employing
separation of variables [12] to obtain the basis
functions.

The corresponding eigenvalue problem is :

d’R(m) , 1 dRM) , 425 -0 s
dn? T PR (™) ©)
subject to
M«»BR@]):O. n=1 6)
dn 43,
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The solution to this problem gives the
eigenfunctions: |

Rn (71) 2] Jo()\n”l), Y ‘ (7)

J,, being the Bessel function of the first kind and of
order 0. From the boundary condition (6), and using
the properties of Bessel functions, the following
equation may be written from which the roots A,
(eigenvalues) can be cobtained:

AJiO) - 8], ) =0, (8)

J; being the Bessel function of the first kind and
order 1.
The orthogonality relation given by the equation :

, m#n

! 0
w(m)R, ()R (n)dn ={N = 9)
{ Rox () , m=n

1s satisfied for the above eigenfuctions with a weight
function w() = 5 and the normalization integral is
given by:

2
Ny = S+ Eaoy. (10)

2
A
The transform pair required for the solution may be
readily written as [6]: :

Integral transform
“ 1
®(,,1)=[MR,M)OM,)dn (11
0
Inversion formula
o390 o, 1)
e(ﬂ,f)=2 M (12)

n=1 N(ln)

! A
Operating on (3) with f nR, ()dy, we obtain:
0
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V {nR.,(n)[n

2 (q 200154, 20D
on  On dt

Integrating the left-hand side of (13) twice by parts
and utlizing the boundary condition given by
equation (4.a) and equations (5) and (6), one can
easily transform equation (3) to the following system
of first order ordinary differential equations :

de(,,7) ., _ = J,(A) @4, 7)
——dt_""lnq’(ln’t)_ Jn()'n)n(l’t’jz-l: N(lj) )s

n = 123..(14)
subject to the following transformed initial condition:

®(2,,0) =31-11 (),

n = 1,2,3..(15)

The solution of equation (14) subject to the initial
condition in (15) renders the dimensionless integral

transform @ (X, t). The solution can be obtained
using an appropriate numerical integration scheme
(Runge-Kutta 4-th order method). Once ®(4,1) is
obtained, the dimensionless temperature distribution

0(n, t) can be reconstructed through the use of the
inversion formula. :

4- RESULTS AND DISCUSSION:

Since the analytical solution is the summation of an-
infinite series, only a finite number of terms are

- taken for obtaining the analytical solution. From the

inversion formula (12), it can be found that when
using a finite number of terms in the series, say m,
the relation between the solution 6(5,7) and the
solution considering only m-terms (6,,(9,7), 1.e. the
remainder E_ is:

= D(A_,
E,=0n-0,(07n= Y 5%)7)‘%“—2

n=m+1

This is estimated for 8 < 0.1 and it is found that:
1

E,< ————.
31(3.1m-2)
Of course, as m increased more accurate solution is
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obtained, however, it is found that when m equals
15-terms a sufficient degree of approximation has
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been reached.

A sample of results is displayed in Tables (1) and
temperature distributions
obtained from both the proposed approach (the finite
integral transform) considering different number of
terms (8,15,20 and 25) and the explicit finite
difference method with radius-step size Ay = 0.05

(2) for dimensionless

and time-step size A1 = 0.0005.

The finite integral transform method considering
only 15-terms in series (12) appears to predict lower
values of temperatures than those of finite difference
the maximum difference
dimensionless temperatures predicted from the two
solution methods is within 0.25% as noticed from

method, while

Tables (1) and (2).

Table 1. Dimensionless temp. obtained from both the FIT method considering different

numbers of terms, and FD method with

B=0.1, Q=2 , 0 =0e=0.75

0.0 0.25 0.5 0.75 1.0

8-terms 1 0.8924738 | 0.808473 | 0.7745443 | 0.7614383

15-terms 1 0.8932476 | 0.808478 | 0.7749432 | 0.7604859

0.0 20-terms 1 0.8936352 | 0.808779 | 0.7751432 | 0.7605733
25-terms 1 0.8939872 | 0.809979 | 0.7752982 | 0.7605934
¥DM 1 0.8946329 | 0.8093747 | 0.77504 | 0.7605377
8-terms 1 0.8839774 | 0.8046416 | 0.7732874 | 0.7604907

15-terms 1 0.8853394 | 0.805557 | 0.7734618 | 07603513
0.25 20-terms 1 0.8859394 | 0.805967 | 0.7736695 | 0.7604784
25-terms 1 0.8863291 | 0.806327 | 0.7737695 | 0.7600457
FDM 1 0.8868775 | 0.8065501 | 0.773675 | 0.7605724
8-terms 1 0.861467 | 0.7957551 | 0.7697268 | 0.7572344
15-terms 1 0.863792 | 0.7973515 | 0.7695794 | 0.7576072
0.50 20-terms 1 0.8645 0.7973901 | 0.7696696 | 0.7579509
| 25-terms 1 0.8646921 | 0.7975404 | 0.7698795 | 0.7583889
FDM 1 0.864601 | 0.7980301 | 0.769776 | 0.757989
8-terms 1 0.8282765 | 0.782734 | 0.7644122 | 0.7560159

) 15-terms 1 0.8297580 | 0.7832989 | 0.764248 | 0.7560213
0.75 20-terms 1 0.8310947 | 0.7837933 | 0.7642412 | 0.7560216
25-terms 1 0.8312446 | 0.783901 | 0.7643801 | 0.7564688

FDM 1 0.8313571 | 0.783338 | 0.764621 | 0.756223
8-terms 1 0.7940307 | 0.7676593 | 0.7596009 | 0.7552608

, 15-terms 1 0.7911796 | 0.7678849 | 0.7576305 | 0.7530531
1.0 20-terms 1 0.792079 | 0.7679434 | 0.7576418 | 0.7532457
25-terms 1 0.7921577 | 0.7680002 | 0.7578509 | 0.7532724
FDM 1 0.792097 | 0.7680102 | 0.7579321 | 0.7534242
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~ Table 2. Dimensionless temp. obtained from both the FIT method considering different
numbers of terms, and FD method with $ =0.01 , Q=2 , 0, =0,=0.75

0.0 0.25 0.5 0.75 1.0

8-terms 1 0.8929508 | 0.8075505 | 0.7735999 | 0.7601917
15-terms 1 0.8938092 | 0.8084926 | 0.7743308 | 0.7601757
0.0 20-terms 1 0.8940374 | 0.8094382 | 0.7747293 | 0.7605066

25-terms 1 0.8943726 | 0.8094423 | 0.774892 | 0.760597
FDM 1 0.8954630 | 0.815964 | 0.7755792 | 0.7608849

8-terms 1 0.8837149 | 0.8048691 | 0.7721113 | 0.759737
15-terms 1 0.8858204 | 0.8060335 | 0.7731369 | 0.7597826
0.25 20-terms 1 0.8861123 | 0.8060348 | 0.7734267 | 0.7599176
25-terms 1 0.8864526 | 0.8060372 | 0.7737321 | 0.7602579
FDM 1 0.8876382 | 0.8073637 | 0.7742284 | 0.7603135
8-terms 1 0.8611105 | 0.7954974 | 0.7631624 | 0.7582097

15-terms 1 0.8632622 | 0.7965198 | 0.7694268 | 0.758293

0.50 20-terms 1 0.8637899 | 0.796572 | 0.7696796 | 0.75823

25-terms 1 0.8640715 ] 0.7972221 | 0.7699545 | 0.7585189
FDM 1 0.8655277 | 0.7983049 | 0.7704923 | 0.7587569
8-terms 1 0.8277435 | 0.7819754 | 0.7631625 | 0.7558986
15-terms 1 0.8299091 | 0.7830943 | 0.763906 | 0.7559182
0.75 20-terms 1 0.8303135 | 0.783403 | 0.7640846 | 0.7889971
25-terms 1 0.8304886 | 0.783656 | 0.7643376 | 0.7562501
FDM 1 0.8320149 | 0.784489 | 0.7646754 | 0.7562667

8-terms 1 0.7992841 | 0.7679736 | 0.7576216 | 0.753247
15-terms 1 0.7930094 | 0.7682794 | 0.757807 | 0.7533819
1.0 20-terms 1 0.7930506 | 0.7683623 | 0.7578582 | 0.7533935
25-terms 1 0.7933815 | 0.7683722 | 0.7580191 | 0.7534152
FDM 1 0.7930345 | 0.768493 | 0.7579713 | 0.7534201

5- CONCLUSION

An approximate analytic solution of a transient heat
conduction problem subject to nonlinear boundary
conditions due to a coupled convection-radiation
heat exchange becomes available. The results are
obtained in terms of a series solution. A root solving
method is used to obtain the required eigenvalues,
while an appropriate numerical integration scheme is
used to determine the dimensionless integral
transform functions. It has been found that a finite
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number of terms can be used for obtaining the
analytical solution, with reasonable accuracy. In
particular, 15-terms were found to be sufficient. A
comparison between the analytical results and the
numerical results obtained showed excellent
agreement.

It can be concluded that the finite integral
transform method is simple, straightforward, and
easily applicable to heat conduction problems with
nonlinear boundary conditions in order to obtain an
approximate analytical solution.
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