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gificial neural networks developed by researchers in cognitive sciences and artificial intelligence
e used in many engineering problems. The main benefit of using artificial neural networks is their
ty to predict behavior of phenomenon that is random in nature. In this paper, back propagation
sural network is used to determine hydrodynamic force coefficients (added mass, drag and lift
pefficients) for an articulated offshore tower subjected to non-uniform flow. The neural network is
irst trained with a set of experimental data obtained from test results of an articulated tower model
scillated sinusoidally in still water. The capability of the back propagation neural network to predict
ew coefficients was then tested against a separate set of experimental data. The results show. that
application of artificial neural networks in predicting hydrodynamic force coefficients has a

considerable potential regarding accuracy.

INTRODUCTION

The forces due to waves and current effects past
embers of offshore structures whose diameter is
mall relative to the wave length generally have two
mponents at right angles to each other. One of
ese fluid-induced forces is the in-line force which
§ parallel to the flow propagation and the other is
he vortex-induced transverse forces. Many studies
jave been done to predict these forces in different
ow and structure conditions, see Sheppard and
(1992) for review on these studies. The in-line
is calculated by Morison equation which is
sed of an inertia and a drag term linearly
d together. The vortex-induced transverse force
mmonly expressed by a formula similar to the
force-typc formula which involves a lift
cient, C; . Calculation of these forces depends
suitable inertia, drag and lift coefficients (C,,
tand C;). With unsuitable coefficients these
uations achieve simplicity but limit accuracy and
licability. According to previous studies (see
ppard and Omar, 1992) these coefficients are
nd to be a function of either Reynolds number,
or Keulegan-Carpenter number, KC, or the
tequency parameter, B(8 = R /KC). Therefore, for
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a successful prediction of the total wave forces on
structural members of offshore structures, the
hydrodynamic coefficients, C,, and Cp, and the lift
coefficient C;, must be known for the range of
application of R, and KC. The values of these
coefficients are generally obtained through model
testing which covers a certain range of R, and KC.
Ever since Morison, et al, (1950) presented their
force equation ‘for wunsteady fluid-structure
interaction, many experimental studies have been
carried out to obtain the hydrodynamic coefficients
(C, and Cp). Same has been done for
vortex-induced transverse force to obtain the lift
coefficient (C ). For over a third of a century, many
hydrodynamlc force coefficients for different ranges
of R, and KC have been available. In an attempt by
the offshore industry to make use of this data, and
in the same time to isolate the ranges of R, and KC
that are not covered, Horton (1992), through a joint
industry  project, collected the available
experimental data on force coefficients for making a
data base and presented their ranges of K, and KCas
shown in Figure (1) (reproduced here with his
permission). As shown in this figure there are many
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gaps which do not have any data. Of course when
~ values of force coefficients are needed in the ranges
where no data is available interpolation should be
used. Successful interpolation is achieved if the data
is well correlated. However, attempts to correlate

these coefficients for the ranges covered have
discouraging and a satisfactory correlation of the:
coefficients has not been achieved. This is due
the random nature of these hydrodynamic forces a
the scatter in the data.

100 fo-..

10 -

KEULEGAN-CARPENTER NUMBER

Cylamder Dismcter
m Fee?

Linesr Theory
10 it i’fz’ ;

x4
/ml"«
£

10

10

REYNOLDS NUMBER

Figure 1. Correlation space-plot of well known sea test hydrodynamic force experiments.

In view of an ever increasing data base and in
order to show the consistency and the scatter in this
data of force coefficients, Sheppard and Omar (1992)
gathered the available experimental data for C,, Cp
and classified them according to the flow and
structure conditions. Such classification should make
correlation of these coefficients using available
methods such as regression analysis and curve fitting
to data points for individual vanations, either
analytically or graphically much better. However, a
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more rational method recently developed could be
used for the selection of hydrodynamic coefficients
at any values of the ranges of a data base even those
where no data exists. Such a method is the artificial
neural networks which is a computational model that
can be loosely described as sets of simple processors
called neurons or nodes and dense interconnections
between them, (see Rumelhart et al., 1986a).
Artificial neural networks (ANN) are inspired by
the neural architecture and operation of the human
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brain. Now they find applications in almost all
branches of science. This is because it can be used
to address problems that are intractable, with high
coupled nonlinear system, or cumbersome with
traditional methods. These intelligent capabilities of
the neural networks can be achieved by using a
‘number of parallel operating processors
interconnected in certain form. The knowledge of a
specific system is stored in the neural networks to
‘determine the parameters of the networks which
“influence the properties of the actual system with no
“assumption being made. Thus, a broad spectrum of
“applications found their course based on the
characteristics of the neural networks.
 In order to use artificial neural networks for
prediction of force coefficients, they have to be
trained with measured force coefficients that
comprise the training set. Once the network is
trained, it will be able to predict the output (force
coefficients) for an urtrained input (e.g., values of R,
~and KC and/or ). However, the networks cannot
make a correct extrapolation. Therefore, the data of
the training set must cover the range of application
or the input data must be within the range of that
~ used to train the networks.
In this paper, the readily available experimental
r data sets (C,,, Cp and C;), carried out by Omar
(1992) for an articulated offshore tower, provide the
data base for this study. Different values of R, and
KC and B8 were used as input parameters to
back-propagation neural networks. Two different
sets of experimental data were used to train two
I different neural networks models. The first networks
. model contains the R, and KC as input parameters,
and the C,, and Cj coefficients as output. In a
similar manner, the second networks model includes
KC and B as input parameters while the C;
coefficient as output only. Then the capability of
these neural networks models to identfy force
coefficients was tested with a separate set of
experimental data.

2. BASICS OF BACK PROPAGATION NEURAL
NETWORK

Many kinds of the architecture of a network, in
terms of the way in which the neurons are
connected, have been proposed. Of these kinds, the
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back propagation neural networks are consideredthe
most popular networks in pattern mapping
applications. The elementary back propagation
neural networks architecture, three-layer with feed
forward connection shown in Figure (2), is
considered in this study. It has the capability to
“learn" system characteristics through nonlinear

mapping.

Output Layer

Input Layer Hidden Layer

Figure 2. Back propagation neural netowrk topology.

The first layer is the input layer where no
operations are performed in each unit. The second
and third layers are called hidden and output layers
in which each unit perform certain function. The
activation value of each unit in the input l’ayer is
passed through links to the hidden layer units. Each
value is multplied by the connection strength,
which is called the weight WAB;, and these
multiplied values incoming to the hi(fden units are
summed as follows :

M G
x,=l§‘T WAB_ A, ninis)

The results is placed through an activation function,
often using the segmoid function f(X), where

B fry=sdoin )

1+e™ 3
e -3 WAByA,

l+e

This activation value of the hidden unit B. is
considered as an input value for the output units gmd
the same procedure is repeated to get the output
activation values Cy, such that,
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The network is trained to recognize the system
characteristics through a supervised training scheme.
This is done in two steps: feed forward and back
propagation. The weights of the connections are
initialized by assigning numbers to a random number
generator. The training set, consists of a certain
number of patterns (input-output pair), about the
system under consideration is prepared. Each input
pattern is fed forward to determine the computed
output and compared with the target output to
obtain the error vector. This error vector is then
propagated back through the networks and the
interconnection weights, WAB and WBC,, are
adjusted at each layer using thc generahzeci delta
rule (GDR), see Rumelhart et al. (1986b).
Afterwards, the next training pattern is fed forward
to obtain a new error vector, and the process is
repeated for the remaining training patterns. The
whole training process is repeated until the
magnitude of weights is converged and the error of
computed outputs is reduced to an acceptable limit,
see Simpson (1990).

The input and output values within the training set
should be normalized between zero and one. In
addition, the number of units in the hidden layer
should be equal to N-1, where N is the number of
training patterns, to alleviate the local minima
problem (Kwon et. al. 1996). Once the network is
trained, it will be able to predict the output for an
untrained input. It should be noted that the
networks cannot make a correct extrapolation.
Therefore, the data of the training set, that is used
to learn the system characteristics, must cover the
range of application. A FORTRAN computer
program is implemented for encoding the back
propagation neural networks algorithm to predict the
hydrodynamic force coefficients.

3. EXPERIMENTAL DATA

The readily available data sets that provide the
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data base for this study is the test model results
an articulated offshore tower (Omar, 1992). 1
experimental program for the data used in this pz
represents the results of 276 tests carried out att
university of Florida. This data is for R, ran
between 6.1x10° and 1.3x10° and KC between
and 9.5. A summary of the test conditions is shoy
in Table (1). In these experiments, the test model
a circular cylinder with an outside diameter of 0.15
m. and length of 3.05 m. in 2.625 m. water depi
Among the instrumentation installed on the te
tower is an X-Y force transducer to measure
instantaneous in-line and vortex-induced transvers
forces simultaneously. Such transducer was inserte
between the top of the tower and the table of th
linear drive motor that drives the cylinde
sinusoidally in still water, see Figure (3). To negat
the need to measure forces at the base, a pin-joinl
was placed between the tower and the X-Y fore
transducer at the top. The velocity and acceleratios
were computed from the time derivatives of the
measured in-line motion monitored by an LD]
transducer. Data has been reduced to extract th
forces coefficients (C,, Cp and C;) and eadl
coefficient is correlated as a function for twi
dimensionless parameters independent of each othe
(R, and KC). This reduces the scatter usually foun
in other investigators’ data. Reader should refer
(Omar, 1992) for details of the model experiment:
setup.

4. APPLICATION OF NEURAL NETWORK

Values of C,, Cp» and C; reduced from test result
has been used to examine the proposed scheme witl
two neural networks models. The first bacl
propagation neural networks model is used to predici
the added mass and drag coefficients. R,and KCar
considered as the input parameters, whlle C,, anc
Cp, are the desired output parameters as shown I
Figure (4a). On the other hand, the second network:
model is structured with two input and one outpu
parameters to predict the lift coefficient C;. The
input parameters are the frequency number, 8, anc
KC and the lift coefficient, C;, only is considered as
the output parameter as shown in Figure (4b).
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Figure 3. Schematic diagram of constrained experimental setup.
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Table 1. Test conditions for experiments.

Item Magnitude
minimum f; 0.5 Hz
maximum f; 1.0 Hz
minimum a 0.085 m
maximum g 0.283 m
temp. range 28-31°C
minimum R, 6.1 x 10°
maximum R, 2.15 x 10
minimum KC 2.6
maximum KC 8.65
minimum S 1792
maximum 3692
Water depth 2.625 m
No. of channels 13 or 14
sampling frequency 40 Hz

Input Layer Hidden Layer Output Layer

Figure 4a. Back propagation neural network model I.

Input Layer Hidden Layer Output Layer

Byy

Figure 4b. Back propagation neural network model II.
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" Table 2. Measured Cp, and C, used for training and testing neural netork model L

Data R, KC Measured Cal. Absolute | Measured Cal. Absolute
10" Cp Cp Error % Co Cn Error %
No.

il 3.1855 | 4.8959 0.496 0.4967 0.156 0.8470 0.8382 1.0369
D 5.9645 | 4.1113 0.242 0.2392 1.037 0.4385 0.4314 | 1.6068
3 6.9248 | 4.2525 0.201 0.2042 1.602 0.3805 0.3878 1.9398
4 58186 | 5.8845 0.247 0.2434 1.455 0.5770 0.5819 0.8472
5 7.2183 | 5.8060 0.185 0.1932 4.465 0.4765 0.4699 | 1.3849
6 84031 | 5.1784 0.162 0.1596 1.498 0.3690 0.3732 1.1210
7 4.2054 | 6.4729 0.496 0.4963 0.065 0.8380 0.8363 0.2043
8 8.3167 | 6.6926 0.237 0.2290 3.361 0.4695 0.4683 0.2574
9 10.678 | 6.5592 0.218 0.2162 0.8103 0.3570 0.3478 2.5740
10 4.7546 | 7.3125 0.519 0.5163 0.5233 0.8315 0.8348 0.4056
11 9.2347 | 7.4537 0.264 0.2731 3.429 0.4685 0.4682 | 0.0630
12 10.435 | 7.3438 0.272 0.2721 0.0396 0.3965 0.4056 2.3130
13 10.364 | 8.3559 0.315 0.3127 | 0.7367 0.4655 0.4636 | 0.3920
14 3.6797 | 5.6648 0.484 0.4794 | 0.9583 0.8320 0.8364 | 0.5303
15 6.7475 | 6.7946 0.268 0.2684 0.1651 0.5740 0.5701 0.6805
16 7.5478 | 7.6106 0.292 0.2976 | 1.9413 0.5745 0.5660 1.4802

4.1. Added mass and drag force coefficients

16 samples well correlated data obtained from the
test results, listed in Table (2), are used for training
and testing the first neural networks model. The
networks have been trained through the first 13th
data patterns, consequently, the number of hidden
units is chosen to be 12. After 280000 training
iterations, the maximum absolute error that has been
achieved is 4.5%, for the calculated output, as shown
in Table (2). This magnitude of error can be
considered as good as enough in predicting the
hydrodynamic coefficients. In addition, the trained
neural networks model should be capable to extract
the features of the coefficients behavior for all input
data which lies in the range of the training data. The
rest of data (14 to 16th data patterns) is chosen to
test the model. It is clear from Table [2] and Figures
(5) and (6) that the differences between the model
output and the measured data are small too. Thus,
this model can be used to extract the added mass
and drag force coefficients of the articulated tower in
nonuniform water flow within the input training data
range of R, and KC.
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4.2. Lift coefficient

18 samples of the well correlated C; data obtained
from experiments and listed in Table (3) are used
for training the second networks model. The data
patterns from 19 to 21 are used to test the network:
model and the chosen number of hidden units for
this network architecture is 17 units. Nearly 500000
training iterations were performed to get below 10%
maximum absclute error as shown in Table (3). This
is considered as the error limitation for the purpose
of this study. However, such error could be reduced
if error criteria (tolerance) is reduced. But this will
be on the expense of the number of iterations and
CPU time for computing. Testing the networks
model using the 19-21st data patterns shows that the
differences between the model outputs and the
experimental data are small compared with that
obtained using the training data, see Table [3] and
Fig. 7. Therefore, this model can also be used to
extract the lift coefficient for the articulated tower
within the range of input training data of § and KC.
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Table 3. Measured C;, data used for training and testing neural network model IL

Data B KC Measured | Cal. | Absolute
pattern 1 0-3 C Cp Error %
No.
1 1.3284 | 3.4033 0.3135 0.3147 | 0.3787
2 1.6207 | 3.2566 0.2185 0.2218 { 1.5018
3 2.0693 | 3.4277 0.8711 0.8372 | 3.8932
4 2.7321 | 3.5744 0.3229 0.3233 | 0.1142
5 1.3276 | 4.1615 | 0.3286 | 0.3336 | 1.5286
6 1.6209 | 4.0937 0.1864 0.1696 | 8.9898
7 2.0692 | 4.1182 0.6138 0.6188 { 0.8108
8 2.7320 | 4.5734 0.2285 0.2273 | 0.5208
9 1.3276 | 5.5833 0.2203 0.2313 5.0010
10 2.4642 | 5.5296 0.4222 0.4285 1.4987
11 2.4642 | 5.8809 0.4812 0.4822 | 0.2087
12 1.3759 | 6.2842 0.2537 0.2384 | 6.0837
13 1.6016 | 6.5988 0.1776 0.1768 | 0.4222
14 2.1964 | 6.9563 0.0977 0.0988 | 1.1026
15 1.3759 | 7.1212 0.2358 0.2239 | 5.0355
16 1.3595 | 7.8975 0.1933 0.1980 | 2.4658
17 1.6017 | 7.2495 0.1563 0.1714 | 9.7264
18 1.6017 | 86518 | 0.1409 | 0.1370 | 2.8054
19 1.8169 | 4.2513 0.1385 | 0.1444 | 43114
20 1.3758 | 5.4440 0.1881 0.2013 | 7.0571
21 2.1964 | 6.9563 0.0977 0.0988 | 1.1026
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Figure 6. Interia coefficient Cyy for harmonical

i 5. Drag coefficient Cp for harmonically
e la . oscillated articulated offshore tower.

oscillated articulated offshore tower.
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CONCLUSIONS

A method has been presented to predict

rodynamic forces coefficients. The back
agation neural networks approach has the ability
predict the force coefficients with reasonable
ccuracy after learning the model with the desired
ange of data field. Using the back propagation
neural networks, the values of the added mass, drag
and lift coefficients, C,, , Cp , and Cj, for an
articulated offshore tower are predicted with good
accuracy. Results of using such a networks model
showed that using well correlated data creates
distinct patterns corresponding to different ranges of
R,, KC and 8.

Although these results are promising, the approach
“needs to be further investigated for predicting the
" hydrodynamic forces rather than their coefficients.
Back-propagation algorithm has the ability to handle
~ the more difficult classification problems that may
~ results from those tests.
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