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ABSTRACT

The use of mean velocity, U, in open channel flow is very common and of general use. It is well
known that using U to determine both the momentum and energy leads to an error which can be
neglected as far as the channel is straight and prismatic. However, for general use, a momentum
coefficient, 3, as well as an energy coefficient, o, must be used to account for the difference between
both the mean and actual velocity distribution. It is also well known that the normal velocity
distribution in open channel of straight longitudinal axis is logarithmic curve. However, in curved
open channel, the velocity has two components, longitudinal, u, and radial, v.. In the present study,
the longitudinal as well as the radial velocity distributions are presented. The graphical representation
of radial velocity distribution derived by Rozovskii (1957) is converted to a numerical representation
for general use. A relationship for the mean radial velocity is derived. The trend between the
resultant velocity,V, versus the flow depth, z, is investigated. Moreover, the angle of deviation of the
resultant velocity from the radial axis is plotted at different values of water level. Finally,
relationships for 8 and « in curved open channel are derived for smooth bottom by performing a
double integration.

Keywords:  Longitudinal momentum coefficient, (3, Longitudinal energy coefficient, «;, Radial momentum
coefficient, 3,, and radial energy coefficient, a,.
Notation
u  longitudinal velocity at certain depth z «; longitudinal energy coefficient
U depth-average longitudinal velocity or in other B, radial momentum coefficient
words the mean longitudinal velocity a, radial energy coefficient
acceleration of gravity = 9.81 m/s dA area of a small strip of height dy and width B
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Von Karman constant, K = 0.4, for clear fluid
Chezy Coefficient, C = 30, for metric units
=z/D

total depth of water

radial velocity

mean velocity

mean radial velocity

inner radius of curvature

outer radius of curvature

rdius of curvature at certain location
momentum coefficient

energy coefficient

longitudinal momentum coefficient
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dA = B dy

A total water area (A = BD).

INTRODUCTION

LONGITUDINAL AND TRANSVERSAL
(RADIAL) VELOCITY DISTRIBUTIONS

Rozovskii (1957) assumed the following logarithmic
longitudinal velocity distribution:

_11= +i£- + 1
=128 (1+1nm) (),
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where u is the longitudinal velocity at certain depth
z. U is the depth-average longitudinal velocity or in
other words the mean longitudinal velocnty g is the
acceleration of gravity =9.81 m/s%. K is the Von
Karman constant, K=0.4 for clear fluid, C is the
Chezy Coefficient, C=30, for metric units. p=z/D
where D is the total depth of water. Rozovskii also
derived the following relationship for the transversal,
radial, velocity profile in a smooth bottom

.E:—L — -—-@ 2 <
o M- L] @)

where fi(n) and fy(y) are defined as following,

respectively:

fim =1 = P1dn 3

2
f,n)=/ [%ldn @)

The relationships of f; and f, are represented
graphically, as shown in Figure (1). For rough

bottom, Rozovskii obtained the following
relationship:
i i -LE e, +08(1 1 M1 )
fiin)—
1.0 Bl

y
N Z/

-2 -1 0 1 2
fiin) & f,(n)

Figure 1. Graphs of functions fi(y) and f,(y) by
Rozovskii.
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NUMERICAL REPRESENTATION OF RADIAL
VELOCITY DISTRIBUTION

For practical use and for purpose of numerical
calculation, the functions f; and fz might be
formulated as following, respectively:

f,(n) = - 1.3259% + 4.108y - 1.575 (6)
f)(n) = 3.1566n° - 7.23489% + 5.9047 - 1.3167(7)

Now the relationship of v, for smooth bottom, Eq.
2, can be rewritten as following:

Y, 1D
E—Kz( r)[f(11)] (8

where
f(n)= ,(n)- Ve [fz(fl)] )]

substituting for values of g=9.81, K=0.4, C=30 by
metric units and for the relationships of f;(n) and
fy(n) as given b}f Eq.6 and Eq. 7, Eq. 9 can be
written as following:

f(y) = 0.8247° - 3.2149% + 5.647 -1.919  (10)

Therefore, Eq. 8 can be rewritten as following:

- _1_2.( )[0.8241°-3.214n2+5.641-1.919] (1)

MEAN RADIAL VELOCITY

It is always known that u can be represented by

= 1 D
u-Bof u dz (12)

or in other words

a-1 ®ups V2.
u f Ult+2 2+ w)] dz (13)

from which it can be proved that u = U.
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Similarly, the mean radial velocity can be given by
the following equation:

- _ 1 D T,
Vi —D(ro-ri)of fr o 1

it is obvious that v, is function of both r and z
Therefore, the mean radial velocity is an outcome of
a double integration. The first is a radial integration
from r; to r, while the second is a vertical
integration from O to D. The radial integration can
be done as following:

J* vdom [ lma a9

Ty _UD . __IJD I,
(J *ved=—Zfn)linGy) Inge1=- REaCo] - (16)
substituting in Eq. 14, then

v, = D(ro_ri) f ([ v drdz=

uD
'Y D(r 1)

17)

[in(=2 o [* fn)dz

However, the vertical integration can be done as
following:

of “fn)dz= [ " [0.824( 2 -3.214(%)?

= (18)
+5.64(-£)-1.919]dz
D
*of “fn)dz = 0.03567D (19)
Therefore,

V.= U—? n(%)][0.03567D]  (20)

(ro i) rl

V: _ 003567 D
o " (ro—r)[ln(_)] (21)

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996

Substituting for K=0.4 and dividing the numerator
and the denominator by r;, the mean radial velocity
may take the following form:

v, Dfr;
— =0223——
U @fr, - 1)

[ln(—)] (22)
The relationship between Vv /U versus rfr; is

graphically shown in Figure (2). It is clear that -v /U
increases as rfr; decreases, provided that DJr; is
constant. However, at certain value of rJr;, -v/U
increases as D/r; increases.

LOCATION OF MEAN RADIAL VELOCITY

To find out the location at which the radial
velocity acts, Eq. 11 must equal Eq. 21, from which,
it can be concluded that

f-@® (t/r; - 1)

o) (23)

which gives the radius at which the mean radial
velocity acts. Also to find the height at which the
mean radial velocity acts, Eq.11 = Eq. 21, from
which it can be concluded that

f(n)=0.8247-3.2149%+5.647-1.919=0.03567  (24)

by trial and error,it can be proved that the height at

which v, acts is
z=045D (25)

Eq. 25 means that the mean radial velocity acts
almost at the half of the total depth.

RESULTANT VELOCITY IN CURVED OPEN
CHANNEL ;

In open channel of curved longitudinal axis, the
resultant velocity, V, can be given as following:

V=ful+v? (26)

Also, the angle of deviation at which :V écté, as
shown in Figure (3), can be given as following:

tan 6 =(2)() @7)
“utu
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Figure 3. The resultant velocity, V, and its angle of deviation, 6, i-position close to bed,
1i- position close to surface.

The relatonship between V/U and z/D, at three
values of r/D, is shown in Figure (4a). It is clear that
as z/D increases, V/U increases. The ratio, V/U, is
almost one at z/D = 0.5 which means that v/U = 0.0
at half the total depth. Also, the relation between
z/D and © is shown in Figure (4b). It is obvious that
as z/D increases, © decreases, provided that Dfr; is
constant. However, at a certain value of z/D, ©
increases as DJr; increases provided that z/D > 0.5
and vice-versa at z/D < 0.5.

C 324

MOMENTUM AND ENERGY COEFFICIENTS
IN OPEN CHANNEL

In open channel of straight longitudinal axis,
determination of both the momentum coefficient, 3,
and the energy coefficient, a, has been established.
It is well known that

u? dA
© (28)
P f U? A
and
u’ dA
= (29)
: fU’ A
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Figure 4a. The relationship between V/U and z/D.
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Figure 4b. The relationship between 6 versus z/D.

where u and U are local and depth average (mean)
velocities, respectively. dA is the area of a small strip
of height dy and width B (dA = B dy) and A is the
total water area (A = BD).

The two velocity-distribution coefficients are
always slightly larger than the limiting value of
unity, at which the velocity distribution is strictly
uniform across the channel section. For channels of
regular cross section and fairly straight alignment,
the effect of nonuniform velocity distribution on the
computed velocity head and momentum is small,
especially in comparison with other uncertainties
involved in the computation.

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996

For fairly straight prismatic channels, the
momentum coefficient, §8, varies approximately from
1.01 to 1.12. In channels of complex cross section ,
B = 1.2. However, for fairly straight prismatic
channels, the energy coefficient, «, vares
approximately from 1.03 to 1.36. In channels of
complex cross section , & = 1.6. Both « and § can
vary quite rapidly from section to section in case of
irregular alignment. Upstream from weirs, in the
vicinity of obstructions, or near pronounced
irregularities in alignment, values of o greater than
2.0 have been observed. For example, a value of o
= 2.08 was computed by Linquist (1929) using data
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from weir measurements made by Ernest W. and
Kenneth B. In case of closed conduits, much larger
values of o have been observed. A value of a =
3.87, was observed at the outlet section of draft tube
in the Rublevo power plant, is probably the largest
known value obtained from actual measurements.
The largest known value from laboratory
measurements is believed to be o = 7.4, which was
derived by V. S. Kviatkovskii in 1940 in the VIGM
(All-Union Institute for Hydraulic Mechinery,
U.S.S.R.) for the spiral flow under a model turbine
wheel as presented by Ven Te Chow (1959).

For practical purposes, Kolupaila (1956), proposed
the values shown in Table (1) for o and S.

Table 1.
Values of a Values of §
Min | Av | Max | Min | Av | Max
Regular channels, flumes | 1.1 {1.15| 1.2 | 1.03 | 1.05 | 1.07
Natural streams, torrents { 1.15 | 1.3 | 1.5 | 1.05 | 1.1 | 1.17
River Valleys, overflood 1.5 JL75) 20 | 1.17 | 1.25] 1.33

Channels

In open channel of curved longitudinal axis,
estimating § and « is more complicated. The
complication arises from the fact that the velocity
distribution has two components; longitudinal (u),
and radial (v)). In the next section, § and « in
curved open channel are estimated.

MOMENTUM COEFFICIENT IN CURVED
OPEN CHANNEL OF SMOOTH BOTTOM

The momentum coefficient in curved open channel

can be obtained by replacing u in Eq. 28 by V as
following:

(30)

and substituting for V2 - (u2+vr2), B can be

i

31
Actually, according to Eq. 31, 8 can represented by
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the sum of two terms. The first may be defined as
the longitudinal momentum coefficient, 8, while the
second may be defined as the radial momentum
coefficient, 8. Therefore, in curved open channel

B=8+8 (32)

where ) and 8, are defined as following, respectively

_ru*dA
Pu” Uz A ==
and
2
v. dA
pr-_-f._‘____ (34)
Uz A

where dA = dr dz and A = D(r_r;)
LONGITUDINAL MOMENTUM COEFFICIENT

Since, u is not function of r, B}, is an outcome of a
single integration and can be written as following:

2 2
=ff u“drdz _ru®dz (35)
U’D(@,-1) ° UD

or

“(~L5" g (1+nZ
Bk Uzn%—c—a 2P dz (36)

let e=—1l(/—-gé, then it can be proved that

B, = 1+e? 37)
for e =(g)*>/KC =(9.81)%5/(0.4)(30)= 0.261
Bp, = 1.068. This value is previously well known.
RADIALL MOMENTUM COEFFICIENT
Since v, is function of both r and z, 8, , Eq. 34, is

an outcome of a double integration and can be
written as following:

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996
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b i G

substituting for v, from Eq. 8, then

2 '_ dz (39
B, zmm ) [OLf" SKmyaz (39

-D p.1 1
—— ——=1 f(n)*dz 40
(_r)flo 1 £(n) (40)

dividing the numerator and the denominator by
(r,-r;) and substituting for f(y), then

B, (

‘ Bl Zy
T )of [0.824(5)°-3214(5)
i %o (41)
+5.64(-125)-1.919]2dz |

it can be proved that

)(0.86D) (42)

D
B, ~(—
Kr 1,
Substituting for K = 0.4 and dwndmg both the
numerator and the denominator by r.2 r,% then

oy
) J1)

For smooth bottom, the relationship between g,
versus r/r; is shown in Figure (5) at three different
values of Dfr;. It is shown that 8, decreases as r/r;
increases provided that Dfr; is constant. At certain
value of r /r;, B, increases as DJr; increases.

It can now be seen that the momentum coefficient
for curved channel, 8 is represented by the following
relationship: -

B, =(33.6 43)

(/1)
1.068+(33.6
B = ( )(a/r.)

(44)

Unfortunately, values of 8 reported from previous
works were absolute. No relationship was reported to

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996

be compared with Eq. 44. However, values reported
by Kolupaila (1956), Table (1), have a wide range
(B= 1.17 to 1.33). This range might be due to the
curvatures.

ENERGY COEFFICIENT IN CURVED OPEN
CHANNEL OF SMOOTH BOTTOM

The energy coefficient in curved open channel can
be obtained by replacing u in Eq. 29 by the
resultant velocity,V, as following:

_(V3dA
a-f = (45)
2)0.5

and substituting for V =(u2+ v, , a can be

1L

U3 DG 1)

The integration is not only double but also very
complicated. Actually, u is function of z, however, v,
is function of both z and r. Moreover, (u +V 2)1 -3 has
infinite terms with infinite integrations. Not similar
to B, a can not be clearly divided to o;, and «,.
However, simplifying the integration may lead to a
satisfactorial result very close to the actual value of
a. To achieve this goal, it may be advanta eous to
cxamlne the convergence between (u +V, )1 5 and
(u +V 3)

The relationship between (u +V 2)1'5 and (u3+vr3)
is shown in Figures (6). At dlfferent r/D , best fitting
leads to the following results at different values of

1/D:

/D = 60, (u+v )= 0.994uv A1 47)

/D =30, (uz+v.)= 0.977(u’+v A1  (48)
/D =20, (W+v3)=0952(%+v 1> (49)
/D =15, Wd+v )= 0.921w%v D)1 (50)
/D = 10, (u*+v3)= 0.853u%v A5 (51)

/D=5, W+ )=07540cvH1S (52
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Figure S. The relationship between S, versus r/r; at three different values of D/r;.

Itis obvnous that the divergence between (u +V 2)1 >
and (u +V, )mcreases as r/D decreases. For r/D-60 30
and 20, esumatmg « by using Va(u® +V, %) leads to
errors 0.6%, 2.3% and 4.8%, respecuvely However,
for /D = 15, 10 and 5, the errors are 8%, 15% and
25%, respectively.

To account for this error, it is suggested to use a
factor called "m" as following: '

N f[.,f !Zu v") dr

U® D@, r,) U3

Values of m can be estimated for different values of
t/D as following:

/D =60, m=1.00 (54)
/D =30, m=1.02 (55)
/D =20, m=1.05 (56)
/D =15 m=1.08 (57)
/D =10, m=1.17 (58)
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m = 1.30 (59

2)1 5

/D =35,

Altcmanvely, the relationship between (u?+v
and (v’ +V, %) is plotted as shown in Figures (7) for
all dlfferent values of 1/D. In this case, best fitting
leads to an average value of m = 1.12 for the range:
60 =2 /D = 5.

Actually, according to Eq. 53, a can be represented
by the sum of ¢ and «, which can be defined as
longitudinal energy coefficient and radial energy
coefficients, respectively. Therefore, in curved open
channel

a=m(a + o) (60)

where o and «, are given as following, respectively

3
u’ dA
o, = (61)
Llygsa
and
3
dA
o[ Mi (62)
U3 A

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996
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Figure 6. The relationships between (u2+vr2)1'S and (u3+vr3) at different values of r/D.
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Figure 7. The relationship between (u2+vr2)1'5 and (u3+vr3)for all values of 1/D.

LONGITUDINAL ENERGY COEFFICIENT

Since u is not function of r, 8}, is an outcome of a
single integration and can be written as following:

¥ u’drdz u’dz
_ff 1]‘.“])(r —l’) f (%)

1
a = v LE D & o

1, rp z z
a=(5)of  [+e(l+in)]i1+2e(1 +inZ)

2 lnz 2 65)
+e“(1+In—)*]dz
( D) 1
let e=[g—, then it can be proved that
KC
a, =(1+3e?-2¢?) (66)
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for e =(g)*/KC =(9.81)%3/(0.4)(30)= 0.261

ap, = 1.1688. This value is in the range which is
previously well known.

RADIAL ENERGY COEFFICIENT

Eq. 8, is function of both r and z, the

Since v_,
v Eq. 68, is double and can be

integration of ¢« ,
written as following:

Iv;| dA
“ff :13 A (67)
f [’tf SD(X _1,) (68)

f(n)®| dz (69
o = 3K6D(r ,)fLJ 3]I(n)l (69)

35, No. 6, November 1996




D%, +1)

D
= f(n)®|dz
) f f(n)*|

(70)

&,

using f (n) as given by Eq. (10), it can be proved
that

*of " 1f(n)*|dz = 0249D = 025D  (71)
now ¢, can take the following form:
f 0.25 D3(r_+1
-_-.___°__‘2 (72)

a
n 2K @, 1.)?

.‘ Substituting for K = 0.4 and dividing both the
. 4
. numerator and the denominator by (r,)", o, may take
following form:
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5 [1+@ /)]
@)

For smooth bottom, the relationship between «, and
1 Jr, at three different values of Dfr;, is shown in
Figure (8) It is clear that o increases as /5
decreases. However, for certain value of r/r, o,
increases as D/r; increases.

Combining «; and «, , the form of o may be
rewritten as following:

«, =30.4(Dfr) (73)

a = m[1.1688 + 30.4@/:93(w—?ﬂ)]
r

74)

where values of m are previously defined in Eq. 54
to Eq. 59 or an average value, m = 1.12.

\ .
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Figure 8. The relationship between «, and r /r; at different values of D/r;.

CONCLUSIONS

1- The velocity of the flow in curved open channel
has two components, longitudinal and radial

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996

distributions. The mean radial velocity seems to
have a very small value and acts almost at half of
the total flow depth.

2- The resultant velocity of flow in curved open

C 331
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channel deviates from the radial axis of the
channel. The angle of deviation is less than 90°
close to the water surface and increases as going
deep under the water surface to become almost
90° at half the water depth. The maximum angle
exists close to the bed surface.

3- The momentum coefficient in curved open
channel can be divided to longitudinal, §;, and
radial, 8, coefficients. §; = 1.068 while 8, proved
to have a relationship . It increases as rr;

decreases,

provided that D/r; is constant

However, at certain value of r /r;, 8, increases as
D/r; increases.

4- The energy coefficient in curved open channel
can be divided to longitudinal, ¢y, and radial, «,,
coefficients. o = 1.1688 while o, proved to have
a relationship. It increases as r/r; decreases,

provided that D/r

. 1s constant. However, at certain

value of r /r;, 8, increases as D/r; increases.
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