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During many major earthquakes,serious damages to

SEISMIC BEHAVIOR OF MULTI-SPAN GIRDER BRIDGES
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ABSTRACT

The seismic behavior of multi-span girder bridges to spatially varying random ground motions
including the foundation interaction is studied. The seismic excitation is represented by the three
translational components of earthquake ground motions acting at the bridge supports. These motions
are idealized as stationary or nonstationary partially correlated random processes characterized by
Power Spectral Density (PSD),Evolutionary Spectral Density (ESD) or double frequency Generalized
Spectral Density (GSD) functions. The soil-structure interaction for rectangular supports of the
bridge is represented by frequency-dependent impedance functions which are expressed by empirical
formulas representing both the stiffness and damping of soil. For stationary seismic excitation,spectral
analysis is carried out in the frequency domain to obtain the spectral moments of response from
which the root mean square (r.m.s) and peak responses are evaluated. For nonstationary seismic
excitation,both evolutionary and generalized double frequency stochastic analyses are conducted to
obtain the time-dependent r.m.s and peak responses. The evolutionary spectral analysis facilitates
the computations through a reduction in the multiplicity of the integrals involved in the double
frequency generalized spectral analysis for the evaluation of the response covariance matrices. A
parametric study is made to specifically investigate the seismic behavior of multi-span girder bridges
and the influence of some factors on their responses. The following four items are of particular
importance: (i) the characteristics of multiple support excitations,such as the nonstationarity, duration,
cross correlation and direction of seismic waves, (ii) the soil-support interaction with variable
embedment depth and shape ratio of supports,(iii) the variation of dynamic properties of the near
field soil,and(iv) the stiffness and length of the bridge (with or without flexible joints). The
numerical results indicate that: (a) the time-dependent mean peak internal forces increase with the
increase of earthquake duration,but do not overshoot the corresponding stationary values,(b) for a
realistic evaluation of seismic stresses induced in the different sections of the bridge,the spatal
variation of multiple support excitation has to be considered,(c) minimum internal forces are
produced if the bridge is oriented perpendicular to the direction of wave propagation,(d) if the bridge
is supported on soft soil,the soil-support interaction results in a significant reduction of stresses,(e)the
internal forces are minimized for surface square supports, and (f)more flexible joints are
recommended to be imposed near the interior supports to overcome the enhancement of bending
moments .

Keywords: Structural engineering, Dynamics, Earthquake engineering.

INTRODUCTION
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bridge may lead to loss of vital services and
multi-span bridges have been reported. Damage of transportation systems. Therefore,a realistic
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evaluation of stresses induced by seismic excitation
at different sections of bridge is important. Unlike
point structures,a multi-span bridge extends for long
distance close to the ground surface;and since an
earthquake excitation is composed of a large number
of waves with different amplitudes,frequencies and
phases,different motions are experienced at the
bridge supports. Therefore,a complete description of
the ground ‘motion requires specification of the cross
correlation between the motons at different
supports. The spatial variation of seismic ground
motions at the multiple support systems (such as
multi-span bridges or overground pipelines) may be
treated deterministically or stochastically.

In the deterministic approach,two methods are
commonly  used,namely,the response-spectrum
method and the time-history method. The single
response spectrum normally used is either an
amplified spectrum enveloping the response spectra
for all supports or the most critical of these spectra,
which results in very conservative results leading to
higher construction costs. Instead,a multiple response
spectrum method is used. However,it does not
account for neither the cross correlation of the
multiple support excitations nor the modal cross
correlation of the dynamic response which can lead
to significant errors in predicting the design loads. In
the time-history method,a recorded time history at
one support is used as the input motion and the
differential motion between any two supports is
estimated by considering a delay in the arrival of the
seismic wave between the supports. Nelson and
Weidlinger [1] developed an Interference Response
Spectrum (IRS),in which any particular ordinate
represents the absolute maximum out-of-phase
response between two adjacent points. Somaini [2]
studied the seismic behaviour of girder bridge to
horizontally propagating waves (body or Rayleigh
waves). The excitation is specified by the horizontal
and vertical free-field motions of the ground surface
in the control points and a time-dependent
correlation function. Nazmy and Abdel-Ghaffar [3]
utilized the step-by-step integration technique to
solve the nonlinear equation of motion of long-span
cable-stayed bridges subjected to multiple support
excitation. Spyrakos [4] studied the seismic behavior
of bridge piers assuming stiff bridge deck and
including the soil-structure interaction. Harmonic
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excitation is assumed and the spatial variation of
ground motion is neglected. The time-history
method is quite costly and more than one analysis i
required to reflect the statistical trends of all possible
earthquakes.

In the stochastic approach,the ground motions at
different points are modelled as random processes
with a given PSD function and the spatial varation
is described by a cross correlation function. This
approach has the advantage that the characteristics of
an ensemble of possible earthquakes may be
considered in one analysis and the statstical
properties of maximum response can be
evaluated,and consequently the probabilistic
informations associated with risk levels of response
can be incorporated into the design decision. Zerva
et al [5,6] developed an analytical model for near
source random ground motions based on the
earthquake and site characteristics. The outputs of
this model (power and cross spectral densities) are
used to analyze the responses of pipelines and
bridges subjected to either perfectly or partially
correlated stationary random input motions. Abdel-
Ghaffar and Rubin [7,8] analyzed the response of
suspension bridges to multiple support excitations in
lateral and vertical directions. The ground motions
are defined through finite Fourier transforms. The
supports are assumed to be rigid and follows the
ground motions. A frequency domain random
vibration is used to evaluate the root mean square
(r.m.s) and peak responses. L.ee and Penzien [9]
developed a stochastic seismic analysis for structures
and piping systems subjected to multiple support
stationary random excitation. The cross correlation of
the input excitations and that of the modal responses
are considered. Zavoni and Vanmarcke [10]
presented a random vibration methodology for the
seismic response analysis of linear multi-support
structural systems to multiple support stationary
input considering the space time correlation and
local spatial variation of ground motion. Soliman and
Datta [11] proposed a response analysis of multi-span
bridge to stationary random vertical ground motion
considering the cross correlation between ground
motions at different points and neglecting the soil-
support interaction.

In the previous investigations [5-11] the seismic
excitations were assumed as partally or fully
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correlated stationary random processes of long
duration. But,the recorded accelerograms of severe
motion earthquakes have finite duration and strong
nonstationarity in both amplitude and frequency
content. Mashaly [12] developed an evolutionary
spectral approach for analyzing the response of
underground pipelines to multimode nonstationary
random ground motion.

The soil-support interaction has considerable effect
on the bridge response. Nevertheless,the literature
search showed that the interaction effect was mostly
ignored. The main task of soil-structure interaction
problem is the evaluation of the dynamic stiffness
matrix of the foundation. To find the soil impedance
functions,a mixed boundary-value problem (in which
displacements are prescribed due to unit harmonic
load at the contact area between the foundation and
the soil) is to be solved [13,14]. By fitting
mathematical expressions to accurate numerical
solutions, Pais and Kausel [15] proposed approximate
formulas for the frequency-dependent dynamic
stiffness of rigid cylindrical and rectangular
embedded foundations.

In this paper,a comprehensive analysis of the
seismic response of multi-support
multiple-support excitation is presented. The seismic
excitation is represented by the three translational
components of earthquake ground motions acting at
the bridge supports in three orthogonal principal
axes (two horizontal and one vertical). The
earthquake waves are assumed to be propagating
towards the longitudinal axis of bridge or incident at
an angle. The ground motions are idealized as
stationary or nonstationary random processes
characterized by PSD or ESD and GSD functions.
The spatial variation of ground motion along the
bridge is incorporated using exponentially decaying
correlation functions. The soil-structure interaction
for rectangular rigid supports of bridge is represented
by frequency-dependent impedance functions which
are expressed by empirical formulas that account for
the embedment depth and support dimensions. The
stiffness matrix of bridge is modified to involve the
effect of flexible joints. Stochastic analyses are
carried out to evaluate the r.m.s and peak responses.
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ANALYTICAL FORMULATION
Mathematical Model and Assumptions

The girder bridge is assumed to be elastic,
continuous, (or with flexible joints) and is supported
at certain intervals along its length on rectangular
supports. The supports are assumed to be rigid and
follow the ground motion,i.e the ground motions at
the base of supports are identical to those at the
bridge deck. A discrete lumped mass model is used
to describe the bridge motion (see Figure (1)),in
which the bridge is discretized into (n-1) 3-D beam
elements (with n nodes) and the appropriate masses
of the elements and supports are lumped at the
nodes. The dynamic d.o.f at each node consist only
of the three translations in x,y,and z directions. The
dynamic soil resistance to support motion is linearly
proportional to the relative displacements between
the soil and supports and is characterized by a
spring-dashpot system (only springs are shown in
Figure (1)) The bridge displacements are small in
comparison to its dimensions.

Seismic Excitation

The seismic excitation is represented by three
uncorrelated translational components of earthquake
ground motions directed along three orthogonal
principal axes (two horizontal perpendicular
components u_v, and one vertical w,) with the
maj u’ %;eg di d d ﬁ d

jor axes "u’ being directed towards the expecte
epicentre (direction of wave propagation),the
moderate principal axis 'v’ directed horizontally
perpendicular to it,and the minor principal axis 'w’
directed vertically. The relative magnitude of the
three components are specified by assumed ratios.
The earthquake waves are assumed to be
propagating in the direction of the longitudinal axis
of bridge or incident at an angle y with a set of
global axes x,y,z (Figure (1)). The components of
ground motion in x,y,and z directions are obtained as

X, =-U,CO8Y +V, siny
¥Yg=u,siny -v cosy 1
Z,=W,
It can be noted from Eq. 1 that the motion felt by

the bridge along the global axes will be correlated.
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L=100m ol

{ ¢ ) seismic excitations

Figure 1. Mathematical model of bridge-support system and seismic excittaions.

The degree of correlation depends upon the relative
orientation () of the bridge w.r.t the principal axes.

The components of ground motion (ug,vg,wg Jat
bridge supports are idealized as stationary or
nonstationary random processes.

1- Stationary random process.

Usually,the free field ground motion is assumed to
be a stationary random process with zero mean and
resembles a filtered white noise of limited duration
charactenized by a PSD function Si,-g(w). Several
forms of the PSD functions are suggested in the
literature. The modified Kanai-Tajimi PSD function
proposed by Clough and Penzien [16] for the ground
acceleration is utilized in the present study,

$1,(©)=S, [H,(0) [ |H () o)

where Sy is the PSD function of white-noise bed-
rock acceleration iig, H;(iw),H, (iw) are the transfer
functions of two soil filters above the bed-rock,where
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o
| [1-(0/o ) P+2(0/0,) 2
IR M .

[1-(0/0)P+2{w/w)

w,,{, are the resonant frequency and damping ratio
OF tﬁe first filter and wg{; are those of the second
filter.

S;, is calculated by defining the filter
characteristics W Sp@p $o specifying a standard
deviation for the ground acceleration gj,,and using

the relation
onl
0%, = { Sﬁs(w)dw 4

for the vanance of process iig(t) defined by the one-
sided spectrum, Si(w)
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2- Nonstationary random process.

Many nonstationary models have been suggested in
most of them,a nonstationary random process u (t) is
represented by the product of stationary zero—mcan
random process i (t) and a deterministic uniformly
modulated (or envelope) function A(t) of arbitrary
shape which includes the nonstationary effect in
amplitude (neglecting the nonstationary nature of
frequency content),i.e

i, O=AMu,®) (5)

Four typical increasing-decreasing envelope
functions are presented schematically in Figure (2),
in which the parameters t,,t,,a;,a,,b;,b,,c,and a, are
adjusted by the magnitude and duration of
earthquake,epicentral distance,and shape of time
history of earthquake ground motion.

A(f)qu; (t/% )z Alt)
; Alt)=3, &Cit-h)
3 ' %

i ] i
i ! ]
i
t H i
[} t ] ]

i, :2 'T—' TJ, ; T T J

(b) Tk (d)

Figure 2. Typical envelope modulating functions A(t).

If A(t) is slowly varying with the time w.r.t u(t)
and is repeated exactly at each record,the
autocorrelation function of ground acceleration is
obtained from Eq. 5 as

Ry () =AGDAGR, (& -t) ®)

using Wiener-Khintchine relationship for stationary
process,the autocorrelation function Ry, (t;-t;) can
be related to the one sided PSD funcnon S; (w),as

Ry, (=[5, (@) " ¥do ™
0

and Riig (t;,ty) can be then rewritten as

Ry (L) =AWAL)[S, (@)e'““Pdo (@)
0

The doub]e—frcquency Generalized Spectral Density
(GSD) function of (t) is then given as [17]
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rik [Ry ute 4t dt, ©)

Sy (wl,wz)

or from Eq. 8,it follows as
1 L. J L]
=—— [ fA(t)A S
Sy (005 [ Jae (:2)£ 4fe): qely st
'l Mgt dt,

On the other hand,Mashaly [12] employed the
approach developed by Priestley [18] to describe a

procedure for finding an expression for the

Evolutionary (time-dependent) Spectral Density
(ESD) function (with the help of Eq. 5) as

Sy (@.1) =A2(t)S;,‘(w) (11)

The spatial variation of seismic ground motions at
the muldple support is accounted for using a cross
correlation function R(r,w). Thus,the cross spectrum
of ground acceleration between two points can be
given as
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51, (60)=5, (ORE®) (12)

in which S; (w) is the local spectrum of ground
acceleration (Eq. 2). The studies in the literature
showed that,R(r,w)at two stations y,,y, decays with
the increase of the separation distance r=|y;-y,|
between them,and the frequency w. Hindy and
Novak [19] proposed the following form

R(@,0)= I
(r,0)=exp[ =

1 (13)

V, is the apparent shear wave velocity of soil,and C
is a correlation parameter that depends on epicentral
distance,earthquake intensity,and the inhomogeneity
of the medium. Based on the data obtained from
Stwong Motion Array in Taiwan (SMART-1)a
tentative mathematical model for R(r,w) was
proposed by Harichandran and Vanmarcke [20],

R(r,w)=A,exp(—%) +(1-A Jexp(-P),
B=2r(1-A,+aA )/6(w) (14)

9(w)=1?/ 1+((o/wo)b’

A, a, I—(, wg, and b, are parameters estimated from
the data. Loh [21] used the SMART-1 array data to
develop mathematical models for the spatial
correlation coefficients of the ground motion
described in the time-domain and frequency domain,

R(z,t)=exp[-c,rlcos2nk,r (15)
R(r,w)=exp[-(a, +a,w)1]

¢y, kg, 3y, 2, are parameters which control the spatial
correlation shape. The correlation functions given by
Eqs. 13, and 14 are employed in the present study

Soil-Support Interaction

The soil-structure interaction has the effect of
modifying the structural response during
earthquakes. Usually,equivalent springs and dampers
are used to represent the soil-structure interaction.
The spring-damper constants are obtained from soil
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impedance functions which are analytically
determined by calculating the displacements at the
contact area between a rigid footing and the soil
(idealized as an elastic half space) due to unit
harmonic load. The evaluation of impedance
functions for various shapes of foundations,
mbedment depths, and soil conditions is a complex
problem. Pais and Kausel [15] proposed approximate
formulas for the frequency-dependent dynamic
stiffness of rigid embedded foundations. These
formulas are obtained by fitting mathematical
expressions to accurate numerical solutions [13,14].
In the present study,these formulas are utilized to
obtain the dynamic stiffness Kdofa rigid rectangular
support having plan dimensions 2B*2B(B<B,) and

embedment depth D,in the vertical (z),and
horizontal (x),(y) directions (Figure (1))
K 9=K *[k+iac] (16)

in which a; is a dimensionless frequency (ag=w
B/V)),w=frequency of vibration,V =shear ~wave
velocity in soilk,c are stiffness and damping
coefficients,respectively,and K°® designates the
approximate static stiffness, where:

a-For vertical direction z:

K. *= —[3 1(B,/B)*"*+1.6]¥[1.0+(0.25+ /B)(D/B)"]
l
2
k=10~ By 30492 'y 10 an
802 B]/B 1 +3(B1/B & 1)
¢,=4[aB,/B+D/B(1+B,/B)]*GB/K *
b- For horizontal directions y,and x:
K- ———-[6 8(B,/B)**+2.4]+[1.0+(0.33+ 'y ,B)(D/B)“]
1
k,-l.o (18)
¢,=4[B,/B+D/B(a +B,/B)]*GB/K ,*
and
K,'=[K,'+ (0 8(B,/B-1))]*[1.0+(0.33 +—— )(DIB)° |
i1 BlIB (19)

k=10
¢,=4[B,/B+D/B(1+B,/B)] *GB/K*

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996
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c- For coupling between rocking and translation in
directions x,and y:

$=3OBK; , Ko-2OBK,' @0

where oz-] ?(1—»)/(1-2»),9-?01sson s ratio,G=shear
modulus=p .V ,ps-soﬂ mass density.

The real and imaginary parts of Eq. 16 represent the
stiffness and damping coefficients, respectively for
the bridge support. If three dynamic d.o.f
(translations) only are defined at each support,the
support stiffness and damping may be represented
by 3*3 matrices. When the coupling between the
rotational and translational d.o.f 1s ignored,the
support stiffness and damping matrices become
diagonal,their elements are obtained using Egs. 16-
19. The overall stiffness and damping matrices
[Kl,and [C{] of bridge supports (of dimension 3n,,
n, being the number of supports) are obtained by
simply assembling those of the individual supports.

Since the dominant energy of earthquake excitation
is confined within a low frequency range,the bridge
has most of its response in this range. Thus,in Eq.
17,the frequency dependence of support stiffness
can be neglected i.e k,=1.0

Bridge Stiffness Matrix [K,]

The standard form of the stiffness matrx for
individual 3-D beam element is modified to
introduce the effect of flexible joints (if any) as
explained in Refs. [22,23]). The stiffness matrices of
different bridge elements are transformed into the
global coordinates and then assembled to achieve the
overall stiffness matrix of the entire bridge
corresponding to kinematic d.o.f (6n),n being the
number of nodes. This stiffness matrix is rearranged
and partitioned into submatrices [Kggl,[Kg,l,[Kpgl
and [K,,] in which () and (A) are the rotations and
translations at the nodes of bridge in global
coordinates. The stiffness matrix of bridge
corresponding to dynamic d.o.f (3n) is obtained by
matrix condensation as

K J=[K, 1-[K ol[Kqel 'K oI @1
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Equation of Motion

The equations of motion of the bridge-support
system subjected to multiple support excitations can
be written in a matrix form of order 3n in terms of
absolute displacements as

(my,] 0 U)| [ICy] [Cyl )
[ 0 [m,+m] ft’;,)}+lczll [Cy+Cdl {Z,)I
K, [K;] [(Up
JLARIRY S v»}
o 0o|. oo 0

To ] o [KJ]{U‘}:{{p(t)}} e

where [m{],[C{],and [K,;] are square matrices of
mass (diagonal), damping,and stiffness of bridge
corresponding to nonsupport d.o.f (3n;); [mZZ],[CZZ],
and [K,,] are those corresponding to support d.o.f
(3nyx[Cyyl, and [Ky,] are matrices of the bridge
damping and stiffness denoting the coupling
between nonsupport and support d.o.f;[C,;],and
[K21] are their transpose;[C.]l, [Ky] are diagonal
matrices of damping and stiffness of bridge supports
of size 3n2,(U1) (U »and (U;) are the vectors of
absolute values of bridge acceleranons,velocmes and
displacements at nonsupport d.o.f, (UZ), (UZ)’ and
(Uy) are those at support d.o.fjand (U )(U) are
vectors of ground velocities (f ground
displacements in the direction of dof at the
supports (3n,).

Equation 22 can be rewritten in a simplified form as:

[MI{0}+ [CHU}+ KU} =[C,JU -+ [K U J=P(o)
where _ i (23)
{P(t)}=[C,]{U‘}+[K JU}

in which [M],[C], and [K] are the total mass,damping
and stiffness matrices of bridge-support system;and
[K E [C ] are diagonal matrices having nonzero
elcments corresponding to support points only.

It should be noted that,the vertical component w,
of ground motion always coincides with the vemca?
axis z and it has no correlation with the other two
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horizontal components in x and y directions.
Consequently,the vertical vibration of bridge could
have been obtained independent of the vibrations on
the horizontal plane. This would have resulted in 2n
coupled equations of motion for responses in
horizontal plane and a separate set of n coupled
equations for vertical response. This will lead to a
considerable reduction of the computation effort.
Since the damping matrix of bridge [Cy] can be
defined only in terms of modal damping,the solution
of Eq. 23 can be best obtained using the normal
modes of structure. However,using the normal mode
theory,the left hand side of Eq.23 can not be
completely decoupled,since the normal modes are
not orthogonal w.r.t [C.]. However,a diagonal matrix
of damping coefficients (e) denoting approximate
modal damping of bridge supports may be obtained
using energy consideration,in which e; is defined as

@R, (24)

0 0
ei=(¢i) 0 [Cg]

where w;,(¢;) are the ith natural frequency and
normalized mode shape,which are obtained by
solving the equation of undamped free vibration.
Now, using the normal mode theory with the
transformation (U)=[¢](Z), Eq.23 is reduced to

Z,+210,0,Z,+0}Z,=(d)TPOV=f,1),i=1,2,..........q (25)

where Z; and f; are the ith modal coordinate and
modal force,q is the number of modes considered in
the analysis,n;=e+{;

RESPONSE ANALYSIS
Stationary Random Excitation

If the seismic excitation is assumed as stationary
random processes with zero-means,and the bridge-
support system is linear,the structural responses will
be also stationary random processes with zero means.
The PSD functions of the responses {R(t)} can be
related to the PSD functions of exciting forces {p(t)}
using the standard expression

[Sgr(@)]=HG0)]"[S (@)IHGE)]  (26)
C 280

in which [Sgp(w)] is the matrix of PSD functions of
the responses,[S__(w)] is that of exciting forces (will
be calculated later), [H(iw)] is the matrix of complex
frequency response functions which varies and
depends upon the response quantities to be
calculated, and */T denote the complex conjugate
and transpose, respectively. [H(iw)], for translations
is obtained as

[HGw)],=[41IAI[$1" (@7)

where [A] is a diagonal matrix of transfer
functions,its elements are obtained by finding the
response to exciting force €' applied in the
direction of each dynamic d.o.f in succession. The
response to €' applied in the direction of ith
dynamic d.o.f is obtained by solving Eq.25 in the
frequency domain with {f(t)} changed to {f(t)}={0 0
.. €98 0 0} T, el is the ith element of {f(t)}. A, is
then obtained as

A=[(0}-0)-iQe,0n )V -0 +Qw,0n)] (28)

[HGw)]; for the internal forces can ‘be obtained
directly from [H(iw)], by simply finding [H(iw)], for
rotations using the relation

Hiw)ly= -[Kgel 'K, JHiw)], (29)

then the standard method of analysis is utilized to
obtain the columns of [H(iw)]; ,where the vectors
{A};,(6); are replaced by {H(iw)},",(H(iw)},".

Calculation of [Spp {w)]:

As stated earlier,the seismic excitation is
represented by three uncorrelated translation
components of earthquake ground motions ug,vg,and
Wy acting at the support points in the principal
directions u,v,w. (Ug) in Eq. 23 contains the ground
displacements x_,y Zg measured in the global
directions X,Y,Z,ngc%l are related to u_,v Wy using
Eq. 1. Since ug,v,,w, are uncorrelated (i.e S, vg™
S, ng)-o I 5]6 PSD and cross SD functions

Dug W&t’: Svg. . :
in global directions x,y,z are obtained as

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996
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S, ‘x‘(o)) =COos2y Su‘(u)) +sin’y Sv.(w)

S, 'y.( w)=sin’y S"(w) +cos?y Sv‘(w)

S,z (®)=S, (@)

55, (@)=8, , (w)=sinycosy(S, (w)-S, ()

(30)

[‘> p(@)] is directly derived using the principles of
spectral analysis, as

[Sp(@)]=IC,IIS, ‘.,'(w)[C.lT+[C.][S. o, (@] K]+

[KJIS, s (XTI, ™+ KIS, ()K"

31)
- The matrices of PSD functions in Eq. 31 will
" involve the cross spectral density functions

i'ix ] i‘ly'l’ Veikey Sy Wy Sx“xq S‘n’ 5 synxq Syuy ljs ZeZay

Letc.. i,j=1,2,........1n

local ground displacements spectra

ngxg,ngy ,ngyg,andSZgzg to be the same for all
stations,using Eq. 13 or Eq. 14 to express the cross
correlation R; (r,w) of displacements between two
stations 1,j, and utilizing the rules of stochastic

analysis,the above cross spectral density functions
can be cxpressed in terms of S, ,S, ,S  , angle of
4 & 4

incidence vy and Ru(r,w) 1,j=1,.....n with the help of
Eq. 30,e.g

Assuming

S, ; =(-iw)R (r,0)S,
qu‘j=(iw)1:{(‘i oS, 32)
5, " UOIRE0)55,

and so on
The root mean square value of the response
quantity Ry(t)(equals the standard deviation op; for

zero mean process) 1s calculated from the one-sided
PSD function Sg; pi(w) as

rm.sR,()=oy, = , [Spa(@)o 33)
0

Nonstationary Random Excitation.

Two alternative spectral methods are presented

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996

herein for obtaining the mean-square response of
multi-support system to nonstationary random
excitation namely,the double frequency generalized
spectra method,and the evolutionary spectra method.

(1) Double Frequency Generalized Spectra Method

Again,since the multi-support system is linear and
the seismic excitations are nonstationary random
processes,with zero means,the system responses will
be nonstationary random processes with zero means.
Using the modal coordinates {Z} given by Eq. 25,the
transformation {U}=[¢]{Z},and the principles of
stochastic analysis,the matrix of covariance functions
of translations can be obtained as,

y . * . T
R, f [HGo LIS (00l o

¢4 dw,

in which [H@w)], is the matrix of complex
frequency response functions of translations that is
defined by Egs. 27,28,and [S (wl,wz)]ls the matnx
of double-frequency GSD functlons of exciting force
{P(OXEq. 9). Note that, the matrix of covarance
functions of forces response is obtained using an
equation similar to Eq. 34 by replacing [H(iw)], by
[H(Giw)]; of forces.

Now,if the ground motions {U },{U }(U) are
considered nonstationary random processes descnbed
by Eq. 5,the vector of ground displacements (for
example) can be written as

{Us(t)}=[A(t)]{I_Jg(t)}

where [A(t)] is a diagonal matrix of envelope
functions and {U _(t)} is a vector of stationary random
processes. Accorglngly,Eq 23 is rewritten as

PO=ICIHAGNU K JAGNU ) =[AOIPO)
Cwith s (35)
{P} =[C.]{I'J ‘}+[KS]{U‘}
Using Egs. 35,6,the matrix of covariance functions of

nonstationary random excitations {P(t)} can be
related to that of stationary random excitations {P(t)}
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as

Rt )1 -TAGIRSE HIAGRTT  (36)

The matrix of double-frequency GSD function,
[Spp(wl,wz)] is obtained using Egs. 36,9 as

e
[Sy(@pepl=—— f [TIAe)IR5¢, BIAGT,

& -i(@,t -w5t) dtl dt2
Moreover, [Spp(wl,wz )] can be obtained as a

function of [‘“-ﬁ(w)], the matrix of PSD functions of
stationary ramgom exciting force [P(t)] using Eq.7,i.e

[Spp("’v%)lj;lr—, [ [A@H[1S5(0)e 4 do)
il 0
[A(tz)]e -i(ﬁ)lll -taz)dtldg (38)

Since A(t)=0 if t;<t<0,and the integrals in the above
equation are convergent (i.e any process has finite
energy),the order of the integrals may be reversed
and the limits are changed,then Eq. 38 becomes

° t
[@,,00= (15— [TA@)1 " IS, ()]
0 . 0 ( 39)

" t
_l_ ~i(0-w)t,
5= { [At)le dt,Jdw

or

[Spp(@ @)1= [[y(0-0 ) [SH@)]T,(0-0)lde  (40)
0

with

447 8% t
. 1 i(w-w,t,
Dy@-0)1"=—— { Al YMat,
41)

t
1 -i(t.)-(.:z)t2
L(w-w,)]l=—][A
D=0~ {[ (t)le dt,
from Eqgs. 40,and 34,[R,,(t1,t)] can be given by
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Ruttyt)l=[ [ [HGo I Dyo-0 ) S50
0-=

0,(0-0)lHie)] e " 4o do,do

Eventually,the time-dependent mean-square
response E[u’(t)] is obtained from Eq.42 by setting

ty=t=t,i.e
El*ON=R, 1= Mo Sx@I0to)]de  (43)
0

in which [I(t,w)] is the matrix of time-dependent
complex frequency response functions and is defined
as

[1t)]*= [ [Hiw )I'U(w-o)]%e o, |

- (44)
1) = [ (-0 )H{o,)]" "*do,

(1) Evolutionary Spectra Method

Equation 25 can be solved in time domain using
Duhamel’s integral. For zero initial condition,the
modal coordinates are given as

in which hy(t-7) is the ith unit-impulse response
function defined as

hy(t-5)=——expl-n,,(t-)lino, ¢-) nsl,
4
h(t-r)=—Lexpl-no-olle ™ - na1 (46)

¢

with 0¢,=0;\/1—ﬂ2 3 we‘=wi\/n2—1

If the ground motions are considered zero-mean
uniformly modulated nonstationary random
processes,expressed by Eq. 5,then using the modal
coordinates {Z},the transformation {U}=[¢{Z} and
the principles of evolutionary spectral analysis
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developed in Ref. [12],the covariance matrix of the
displacement response {U} can be calculated as

R )= f [41(B(t,, @) [$1 IS (4B, 0)][¢]dw (47)
o

where [B(t,w)] is a diagonal matrix of modulated
impulse-response functions given as

Bt.w]=[[A@IbE-)le*dc  (48)
0

its elements are evaluated numerically (Ref. [12]).

The time-dependent mean—sguare displacements
[E[u?(t)]}(same as variances [o,%(t)]) are obtained by
setting t;=t,=t in Eq. 47,

EUOT-[0}01= [IQ" GoNSx@)IREe) o (49a)
0

or
[EIU*ON=[0;01=[[S,&w)ldo  (49b)
0

in which,[S  (t,w)] is the matrix of ESD functions of
the response vector {U(t)},where

[Su(t:0)]=[Q(t )] [S7(@)IQE )" (502)

and

[Q(t,)]"=[$1(B(t, )] "], [Q(t, )" =[$](B(t,)][¢]" (50b)

The time-dependent mean square forces
[E[fz(t)]]-[afz(t)] are obtained using equations similar
to Eqs.50 in which [¢](not [¢]T) is replaced by [y]
the matrix of mode shapes of forces which is
obtained using the standard method of analysis with
the help of [¢] and the relation (0)=-[K00]'1[K A0)(8)

Statistical Properties of Maximum Response

In many design problems,it is necessary to evaluate
the peak structural response. The peak value of a
random process is a random variable,its mean value
and standard deviation are important to defining the

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996
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risk level in the seismic risk analysis and design
decision of structures. Consider the random force
process {f(t)}; the peak value of f(t) during the time
interval T is defined by

£ (T)=max [f(t) | 0<t<T (51)
The probability distribution,Fy . (a)
of f _ (T) is given as

max

Ffm(a) =P[f . <a] (52)

which is closely related to the probability
distribution L(T) of the first passage time T (that
is defined as the tme at which fmax(T) crosses a
level a (Figure (3)) for the first time)i.e

F, (2)=Lp(T) (53)

fmax(t)

up -crossing do\m-crcssinﬁ

- N /
1
N m
1 V¢

b M\ 0/

LNl RS

Figure 3. The first passage time T}

Consider that the number of upcrossing f_ ., of level
« in the time interval (0,T) is a nonhomogeneous
Poisson’s random process. The probability
distribution of n upcrossings is given as [24]

T P
P@D=—[[vOdPexpl-[v0d] (54

0 0
where Wt) is the rate of level a crossings,or the

probability density in time of crossing the level

f hax=0t With a positive slope at time t,
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v®=N;_(a.0= { R CR T 55

where f_, dt=a-f_ .

The probability distribution of no crossing in
interval (0,T) is

5
P(O,T)=Poexp(~ [v(t)d) (56)
0

which i1s called also the probability distribution
L4(T) of the first passage time, where Py=P(T>0)=
probability of survival at t=0 (note that: Py=1.0 for
high value of ).

From Eqgs. 53,56,

T
F,_(o)=exp(- {v(t)dt) P,=1 (57)
If f(t) 1s a narrow band normal (Gaussian)
process,then from Eq. 55,
T, T 1
v(O)dt= [N, (,)dt =N, 0, T)exp[- —(—*—)P] (58)
{()d {;( =N O.Dexpl-5 (7]

where B is a parameter associated with the
distribution of peaks of nonstationary random process
and N7 (0,T) is the expected number of zero
crossing in interval(0,T),where

T
N;(O,D=[N;©0dt ,
0

N*(Ot)=_1_3f_(9=i _)ét_)
O o adt) 2my Ay t)

Ao(E),A,(t) are the first and third moments of the
time-dependent ESD function S{w,t) and can be
¢valuated from the relation

(59)

A= 0™S(0,0d0 (60)
0
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Note that:for stationary

substitution from Eq.58 into Eq.57 yields .

=exp(-N;’ . YL
B, (@)=exp{-Ny (0,T)exp] 5 ,(t)) I o

where
D, =[Bln(N{ (0,T)]"? (62)

The mean peak value E[f_, (T)] of f_, (t) can be
obtained as {25}

Elf o, 1=, "K,_ (00,0 (63)

where K . (t) is the time-dependent peak factor
given as

0.5772 (64)

Kfm.(t) =Dl % Dl

and the standard deviation oy, (t) of f () is also
given as

0, O=—-C (65)

random force process
f(t),same procedure described above can be used,in
which the integral ( § «(t) dt) is replaced by (».T),and
B=2 in Egs. 58,61,and 62;accordingly D, in Egs. 62,
64, and 65 becomes

19 114

D,=[2ln(N; (0. T , Nf+(0)=2n mig-e?] Ry
£ 0

. (66)
Ap=[ ™S (@)do
0

NUMERICAL RESULTS

Employing the analysis methods proposed in the
previous sections,a computer programme is
developed by the auther. Using this programme an
extensive numerical study 1s conducted to
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investigate the seismic behavior of multi-span girder
bridges and the influence of some important factors
on their responses. The three-span bridge shown in
Figure (1) is analyzed to conduct the numerical
study. The following input data are used:

Bridge and Sug:'port Data: Mass densitz
"~ pp=0.25(t/m”)/(m/sec”); modulus ofelasticity E=3*10
t/mz; bridge length L=100m or varied; cross-section
properties are A~4.8m2,lx=-3.6 m? 5 Iy-1.024 m* or
varied; modal damping ratio of bridge material
{=0.05 and is common for all modes; the ratios
between joint rigidity to bridge rigidity,
= (EL)y/ (EL), =1.0 I=(EI )/EL), =10,
ra-(EA)j/ éA)b =1.0 or varied; shape ratio of
rectangular  support B,/B=2 or varied; and
embedment depth D=2m or varied.
Soil Data: Mass density p, =0.1628(t/m>)/(m/sec);
-shear wave velocity V=69 m/sec or variable; shear
modulus Gs==Vs2 *ps »and Poisson’s ratio »g =0.33.
Seismic Input: The seismic excitation is represented
by the three uncorrelated components of earthquake
ground motions acting in the principal directions
u,v,w. The PSD function S;;, (w) of stationary ground
acceleration in the major direction u is obtained
using Eqgs. 24 for a standard deviation of ground
acceleration oy, =0.61 m/sec? and the characteristics
of filters representing soft soil condition (V=69
m/sec, Wy =27, we=0.2m, S ¢ =0.4). The nonstationary
ground acceleration in the major direction u is
defined (with the help of Eq.5) in terms of the
stationary ground acceleration and envelope function
A(t) which 1s assumed same for all the ensemble.
The envelope function shown in Figure (2¢) is
employed herein. The double frequency GSD
function Sy (w;,w,) and the ESD function S-u-g(w,t)
are obtaint:(f using Eqgs. 10 and 11,respectively. The
PSD functions of ground accelerations in the
moderate and minor principal directions are defined
by Svg(w)-0.75 Sifg(‘*’)’s%&l (w)=0.5 Sﬁg(w),respectively.
Equation 13 is used for cFeﬁning the cross correlation
function R(t,w) between any two stations,in which
the parameter C is adjusted (C/V =0.0091) to reflect
the same degree of correlation when Eq. 14 is used.
The earthquake waves are assumed to be
propagating in the direction of the longitudinal axis
of the bridge or incident at an angle y with it.

The bridge length (L=100 m) is ivided into
different number of equal elements (7,10,13,17) with
element lengths /=14.28, 10, 7.69 and 5.88 m. Table

Alexandria Engineering Journal, Vol. 35, No. 6, November 1996

(1) shows that the internal forces at interior supports
attain stationary values for element length /<10 m.
Therefore, the analyzed bridge (of length L=100m)
is divided into 10 elements (n=11) of length /=10m

Table 1. Effect of element length /

element M, M, N
length (m) | (t.m) (t.m) (ton)
14.28 1056 462 1492
10.00 1064 467 1466
7.69 1068 470 1469
5.88 1069 471 1470

The distribution of root mean square (r.m.s) values
of internal forces along the bridge length is shown in
Figure (4), from which it can be noted that
maximum internal forces are produced at the interior
supports.
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»,

W S @m0 901
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Figure 4. Distribution of internal forces along
bridge length.

The r.m.s values of bridge responses to
nonstationary excitations are obtained using the
evolutionary spectra method and the double
frequency generalized spectra method. The internal
forces obtained are the same for the two. However,
the second method consumed much more
computational time. Therefore,the first method is
employed in the rest of this study.
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Effect of Nonstationarity and Duration of Earthquake
Ground Motion

The time-dependent r.m.s values of internal forces
at the interior support are obtained using two
envelope functions (see Figure (2c)) with t;=2, t,=5,
T=10 sec for envelope 1 and, t;=2,t,=10,T=15 sec
for envelope 2). Figure (5) shows the tme-
dependent r.m.s values of bending moments
(M,,M,) and axial forces (N),using envelope 2,from
which it is seen that these forces reach their
maximum values at a time t=4 sec and remain fairly
constant up to t=10 sec (the tume at which the
envelope function begins to decline),then they
decrease in a similar way as the envelope function
and diminish at time t=20 sec. The peak factors
increase with the time up to t=11 sec (envelope 1)
and t=16 sec (envelope 2),then remain constant.

oo e e =

\ el 200

r.m.s bending mements My, Fy(t.m)
s

[
L3
=

R . B R T T

bYmelsec)

Figure 5. Time-dependent r.m.s values of internal
forces.

22

The maximum values of nonstationary r.m.s
internal forces M,,M_,N (obtained at time t=5 sec
for envelope 1 and t=10 sec for envelope 2 with the
corresponding peak factors and mean peak values
(Eq. 64) are listed in Table (2). The r.m.s internal
forces and their peak factors obtained due to
stationary excitation of duration T=26 sec are also
given for the sake of comparison. Referring to the
mean peak values of internal forces,it is noted that
the nonstationary internal forces (envelope 2) are
about 0.866-0.886 of those obtained with the
stationary assumption. Moreover,the nonstationary
responses to ground excitation of duration T=10 sec
are about 0.895-0.914 of those induced when T=15
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sec. i.e the internal forces increase with the increase
of earthquake duration.

Effect of Spatial Variation of Earthquake Waves

The degree of cross correlation between multiple-
support motions is specified by the parameter C in
Eq.13. Figure (6) shows the variations of r.m.s
internal forces with C. It can be observed that,the
internal forces increase with C up to certain values
then remain constant or slightly decrease. As C tends
to 0 (the excitations become fully correlated) the
internal forces decrease rapidly. Accordingly,the
assumption of full correlation of motions at supports
would result in zero differential motion between the
bridge supports and a force-free rigid body motion.
This would contradict the observations from previous
earthquakes,in which most damage in bridges was
attributed to both axial forces and bending moments.
Therefore,it is important to consider the spatial
variation of ground motion in the design and safety
evaluation of mult-span bndges.
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Figure 6. Vanation of r.m.s internal forces with
parameter C.

Effect of Angle of Incidence vy of Earthquake Waves

For different angles of incidence v the r.m.s values
of bending moments and axial forces at the interior
supports are calculated and plotted versus vy in
Figure (7). It can be noted that these forces reach
their maximum values for y =0,i.e when the bridge
is oriented in the direction of expected epicentre
(direction of wave propagation).
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Table 2. Stationary and nonstationary mean peak values of internal forces.

bending moment M, bending moment M, axial force N

type of response | r.m.s | peak | mean | rm.s | peak | mean | rm.s | peak | mean

value | fac. | peak | value | fac. peak | value | fac. peak
nonstationary 1059 | 1.694 | 179%4 1.705 | 788 1459 | 1.677 | 2447
(envelope 1)
nonstationary 1061 | 1.849 | 1962 1.896 | 880 1462 | 1.828 | 2673
(envelope 2)
stationary 1064 | 2.104 | 2239 2.176 | 1016 | 1466 | 2.058 | 3017

Fit

o

15

30 AS ‘0
angle of incidence x(dcgrt:is "

Figure 7. r.m.s internal forces VS angle of incidence
Y-

As vy tends to 90,the excitations become fully
correlated,the rigid body motion predominates,and
the internal forces decrease considerably. For y=90°,
M,, My, N are reduced to 0.32,0.61,0.07 times those
obtained when vy =0,respectively.

Effect of Soil-Support Interaction

The effect of soil-support interaction depends on
the relative stiffness of the bridge-support system
and the soil (represented by the shear wave velocity
V. V, is taken as vanable parameter ranging
between 30 m/sec(representing a very soft soil) and
630 m/sec (for soft rock providing almost a fixed-
base condition) using a constant value of
C/Vs =0.0091 (to keep the same degree of
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correlation) and utlizing the same acceleration
spectra (corresponding to soft soil condition). The
variation of r.m.s internal forces with V_is shown in
Figure (8). The interaction effect is pronounced for
low values of V. As V_ increases,the internal forces
increase,ultimately  reaching their fixed-base
condition(i.e no interaction effect takes place).
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Figure 8. Vanation of r.m.s internal forces with
shear wave velocity.

It shoud be noted that,when the ground
acceleration spectra are modified to account for the
variation of dynamic characteristics »$g ¢ 55 of
soil type,contrary results are observecf as shown in
Table (3), where the bending moments decrease
sharply with the increase of V,while the axial forces
increase up to V_ =330 m/sec,then they decrease for
any further increase of V..
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Table 3. Effect of type of soil filter and associated ground spectrum.

type of soil dynamic characteristics of soil r.m.s internal forces
filter filter spectrum

Vom/s |0, =100¢ | & =& ‘M :(t.m) | My :(t.m) | N :(ton)
very soft 30 3.14 0.3 1 2363 1441 1256
soft 69 6.28 04 2 1064 467 1466
average 150 10.99 0.5 3 540 198. 2296
firm 330 15.70 0.6 4 300 108 3170
extremely firm 550 31.40 0.8 5 93 35 1349
soft rock 630 47.10 0.9 6 49 19 733

Effect of Embedment Depth of Supports

Figure (9) shows the variations of nondimensional

r.m.s moments Mx/MxO,My/MyO
supports(normalized w.r.t

at the interior
MXO’MYO’ NO obtaine

and axial force N/N,
the

d for surface supports) with the

embedment depth D. The internal forces increase

with the increase

of D; the increase of N is

significant. For D=5m,M,/M,, =1.25,MY/MYO =1.20

and N/N , =3.56.

&0
My
ey o4
Wiy 2@ mewmes N /’
s V.
-E 304 /,/
-
z e
S ~
& 20 ,//
a Pid
& /
 wiln i :
z /M"——M—‘Z—_-%——
= 10
[
B
2
00 : ; : ;
10 2:0 3-0 &0 S-0

Figure 9. Variation
embedment depth.
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embedment depth D

of r.m.s internal forces with the

Effect of Shape Ratio B;/B of Supports

For D=2.0 m,the r.m.s internal forces are obtained
for different values of shape ratio B;/B of supports.
The varnations of nondimensional r.m.s moments
(Mx/Mxl,My/Myl) and the axial force (N/N,) at the
interior supports (normalized w.r.t Mxl’Myl’Nl
obtained for B;/B=1) with BI/B are shown in Figure
(10), from which it is seen that as B;/B increases
from 1 to S,Mx,My,N are magnified by 1.20,1.10,1.88
times, respectively.
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Figure 10. Variation of r.m.s internal forces with the
support shape ratio.
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| Effect of Bridge Length L

For bridges having different lengths and same cross
sectional area (A-4.8m2 IX=3.6m4,Iy-1.024m4),the
rm.s internal forces at the interior supports are
obtained and plotted against the bridge length L in
Figure (11). It is seen that the axial forces increase
with L; butthe bending moments decrease with L
up to certain values,then they increase. In this
context,it should be mentioned that the increase of
L implies two counteracting effects;(i) decrease of
the degree of correlation which increases the internal
forces,and (ii) decrease of bridge stiffness which
reduces these forces.
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Figure 11. r.m. internal forces versus bridge length.
Effect of Flexibility of Expansion Joints

Figure (12) shows the varations of r.m.s internal
forces at the interior supports with the rigidity ratios
rxé(EIx)j /(Elx)b,ry=(EIy)j KEIL))y,, and r,=(EA)./(EA),
of joint rigidity to bridge rigic?ity. From the figure,it
is noted that,for rigidity ratios greater than 0.2,the
effect of joints is marginal. Nevertheless,if
rx=ry=-ra=0.01,considcrable reductions (44%,48%) of
bending moments Mx’My are achieved.
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Figure 12. Effect of joint flexibility on the internal
forces.

Effect of Bridge Stiffness

Different bridges having the same length L=100m
and variable cross sectional areas are analyzed. The
properties of areas and the r.m.s internal forces
obtained are given in Table (4), from which it is
seen that the bending moments increase significantly
with the increase of stiffness. However,the normal
stresses may have opposite trends.

CONCLUSION

Stochastic methods are developed for evaluating
the dynamic response of multi-span bndges to
spatially variable muluple-support  excitations
including the soil-support interaction. The excitation
are represented by the three translational
components of earthquake ground motions acting in
three mutually perpendicular directions and incident
at an angle w.r.t a chosen set of global directions of

- the bridge. Each component is considered as

stationary or nonstationary random process. The
nonstationary process is expressed by the product of
a stationary random process with a deterministic
envelope function of arbitrary shape. Empirical
formulas are employed for expressing the frequency-
dependent impedance functions of soil. Spectral
analyses are conducted to obtain the spectral density
matrices (for stationary excitation) or the covariance
matrices (for nonstationary excitations),from which
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the spectral moments and the statistical properties of
bridge response are evaluated. The analyses are

excitation is of major importance and has to be’
considered in the design of multi-span bridges.

described by reference to multi-span bridges; (3) If the bridge is oriented perpendicular to the
however,they are applicable for many types of expected direction of epicentre,the excitation
lifelines,such as overground pipelines,and the power becomes fully correlated and the internal
transmission lines. The evolutionary spectral analysis forces would be minimum. Maximum internal
facilitates the computations through a reduction in forces are induced in the bridge sections when
the multiplicity of the integrals involved in the the earthquake waves propagate in the
double frequency generalized spectral analysis. direction of the longitudinal axis of bridge.

Therefore, this analysis holds the promise of (4) When the soil-support interaction is taken into

becoming a convenient design office tool. account,the internal forces are decreased. The

The methodology developed herein is used to carry reduction is pronounced for softer soil and
out an extensive parametric study on the seismic may lead to a significant saving of design cost.
behavior of multi-span bridge that led to the (5) The internal forces are minimized for surface
following conclusions: supports (i.e those having zero embedment

(1) The time-dependent internal forces do not depth) and square supports (B;/B=1.0). The
overshoot the corresponding stationary internal minimization of axial forces is of higher order.
forces. The ratios between the nonstationary (6) The axial forces increase with the increase of
and stationary mean peak values increase with bridge length up to certain length,then remain
the increase of earthquake duraton;but,they constant. Conflicting results are observed for

_ are always less than unity. the bending moments.

(2) The partially correlated support motions excite (7) The increase of bridge stiffness (cross
all modes and can give high differential sectional area) results in considerable
displacements and result in significant internal reduction of normal stresses produced by the
forces. This agrees with the observed seismic axial forces.
damages of bridge in the past earthquakes. (8) The flexible joints reduce the internal
The assumption of fully correlated seismic forces;the reduction of bending moments is
inputs significantly underestimates the internal significant for rigidity ratios <0.01. More
forces (especially the axial forces). flexible joints are recommended to be
Therefore,the spatial vanation of seismic imposed near the interior supports to reduce

the bending moments.

Table 4. Effect of bridge stiffness.
properties of areas internal forces normal stresses :(Kg/cm®)
A:m) | L) | L:(m) | Me:(tm) | My:(tm) | N:(ton) | fix | finy fi

0.66 0.066 0.020 33 16 1078 271.5 240 163.3
1.20 0.225 0.064 90 40 1250 30.0 25.0 104.2
2.64 1.065 0.317 390 153 1400 40.3 29.0 53.0
4.80 3.600 1.024 1064 467 1466 443 36.5 30.5
7.40 8.442 2.467 1890 996 1497 41.4 40.4 20.2
10.56 17.037 5.069 2789 1714 1515 36.0 40.6 14.3
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