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ABSTRACT

The interval eigenvalue problem Alx = \x is discussed with a chronological survey on methods of
solution and on the stability interpretation of interval matrices. Some applications and related topics

are also presented.
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1. INTRODUCTION

With practical computational problems, a standard
question should be "What is the error in the
results?". As already pointed out by Wilkinson [53],
the considerable amount of the applied procedure is
to improve the approximate result and also to give
error bounds for the improved approximation. The
demands of the computer age with its finite-
precision floating-point arithmetic make the accuracy
of the results, produced by an algorithm without
given associated error estimators, still pose a problem
in today’s software. These demands have indicated
the need for an anthmetic structure which is referred
to as interval arithmetic.

Self-validating numerical methods which not only
produce an answer but also a guaranteed error
bounds would be of interest especially for the
following situations:

1. An essentially true answer is required for an
accuracy comparison study among several
competing algorithms, or an accuracy study of a
newly developed algorithm, and

i. The computed result has to satisfy some given
accuracy requirements since it will be used in
subsequent computations.

To obtain self-validating numerical methods, a
subject called interval analysis has appeared in the
mid-sixties (Moore [34]). This analysis uses interval
numbers and interval arnithmetics. Now, interval
analysis is used in many areas of applied
mathematics, such as solution of linear systems,
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optimization problems, error analysis, control theory,
..etc.

In linear algebra, especially in matrix theory, the
eigenvalue problem is a well-known problem. Many
decades have been spent by researchers to
investigate reliable solutions suitable for the variety
of its applications in engineering and science. The
study of how eigenvalues of a matrix are affected by
variations in the entries of the matrix is a well-
studied topic as evidenced in the literature on
perturbation theory and eigenvalue bounds, e.g. cf.
[53] and the references contained therein.

The interval analysis of the eigenvalue problem is
the case when large variations in the matrix entries
are possible and when detailed structural information
concerning the uncertainties is available. The
analysis is then applied to interval matrices to answer
three main questions:

i. What is the location of the eigenvalues of an
interval matrix?

ii. How does the spectrum of an interval matrix
depend on the spectrum of its end matrices?
and,

ii. How to compute the exact lower and upper
bounds for every eigenpair of an interval matrix?

From 1984 to 1986 some relevant research began to
appear and some primitive results are given in [4],
[22], [23] and [40].

The layout of this paper is as follows. In section 2,
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the mathematical preliminaries and definitions
needed for interval analysis are presented. Section 3
is devoted to the interval eigenvalue problem and
recent advances related to its solution. Some
applications of the problem are discussed in Section
4. In Section 5, we define two related topics: the
singular value decomposition (SVD) of an interval
matrix, and the problem of eigenpair enclosure.

2. MATHEMATICAL OVERVIEW

Let A be a square matrix. The two fundamental
problems of linear algebra are:

i. Solving the linear system of equations Ax = b,
ii. Solving the eigenvalue problem Ax = Ax.

Here A is called a matrix of point entries. In the
following, both problems will be defined for an
interval matrix Al together with the related
definitions and notations.

A. Interval Arithmetic [7]

An interval number is an ordered pair of real
numbers [a,b], with a<b. It is also a set of real

numbers RN where
R ={r:a<r<b} . 2.1

The four standard operations (+,-,-,+) are

defined over interval numbers as follows. If [a,b] and
[c,d] are two interval numbers, then

[ab] + [cd]=[a + cb + d]

[ab] - [cdl=[a - db - (]

[a,b] - [c,d] = [min(ac,ad,bc,bd),
max(ac,ad,bc,bd)]
fa,b] + [c, d] = [a,b] - [—-,—c-],
such that 0 &[c,d]. 2.2)

B. Interval Matrix Al [10,19]
An interval matrix is a real matrix in which all

entries are interval numbcrs In precise terms, an
nxn interval matrix Al = [P,Q] is a set of real
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matrices defined as
-{A = {a }ERan P5A<Q P= {plj} GRan
Q = {q“} Ennxn, and 191 - 1 27 1) } (2 3)

Here the symbol < means that the inequality <
holds entry- w1sc, Le., P; S3; Sqy, ij=1.2,.,n Itis
clear that A is boundcd by the two matrices P and
Q, which are referred to as its end-matrices.

The central matrix A_ of an interval matrix Al =
[P,Q] is the mean Value of A, i.e.,

A, - %(Q +P) 2.4)

The matrix of uncertainties AA of an interval matnix
Alis defined by

AA= %(Q -P) (2.5)

In terms of A, and AA, defined in (2.4) and 2.5),
the interval matrix may be written as

Al={A:A - AA < A < A_+ AA} (2.6)
where the end matrices P and Q are expressed as
P=A_-AA and Q=A_ + AA 2.7)

An nxn vertex matrix V! over an interval matrix A!
is a set of real matrices (subset of AI) defined by

Vi={A = {3;) ER"" : P<A<Q, P = {p;} ER™",

Q {qu} ERan a..

= P;; Of a;;
and 1,j=1, é, N

i = i
fropehi Shivolie,

In an interval matrix A defined in (2.3), if A = A
P = PT and 0 = Q with the superscript "T"
denoting transposition, then Al is referred to as
symmetric_interval matrix. Similarly, we can define
the symmetric vertex matrix and is denoted by Vz
If a matrix A has real eigenvalues, arranged as \(A)
2 M(A) = ... = N (A), then its spectral radius p is
defined by

p(4) = | M) | 2.9)

The modulus of a2 matrix A = {aij} is defined as
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|A| ={]a]} (2.10)
i.e., the absolute values are taken entry-wise.

N.B,, It is to be noted that similar definitions for an
interval vector b! are valid.

C. Linear Interval Equations

In many applications, it is often required to obtain
a solution to the linear system Ax = b in which A
and b are both affected by uncertainties. This means
that it is required to determine the tolerance in each
component  X; of the solution x knowing the
tolerance inherent in each element ay; or by Such a
problem. which pertains usually to a linear model
whose data come from field or experimental
observations, is referred to as linear interval equation.

A great deal of work has been done in
characterizing solutions of the linear interval
equation

A'x = b 2.11)
in which A! (bl) is an interval matrix (vector) having
upper and lower bounds. By solving eq. (2.11), we
mean to solve the equation Ax = b in which A and
b range, respectively, over A! and b' where

A'l={A:|Aa-4_| < a4),
b'={b: |b-b. | < Ab) (2.12)

In fact, the solution of eq. (2.11) means how to
determine an interval solution x|, which has the
smallest width, enclosing all possible values of the
vector x satisfying Ax = b when A and b assume all
possible combinations inside A' and b'. In other
words, how to get an exact hull to the set
X={x:Ax=bAc4,beb). (213

- In 1964, an answer to this problem was first
supplied by Oetthi and Prager [38], who have shown
that x is a solution of eq. (2.11), i.e., belonging to
the set X defined in (2.13), if and only if it satisfies
|Ax -b,| < AA|x| + Ab. (2.14)

Methods have been established, since then, for
obtaining upper and lower bounds for x by defining
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for every x € X, its signature vector sgn(x) €R" by

1 if x1>0
= -1

sgn(xi) (2.15)

otherwise

A survey of these methods can be found in [9] and
[37]. Some algorithms are also proposed to compute
exact hull enclosing X, e.g. those of Rohn [41, 42,
44] for instance. For more abeut this topic, the
reader may consult references [17] and [35].

3. THE INTERVAL IIEIGENVALUE PROBLEM
A'x = \x

The research work related to the interval
eigenvalue problem began to appear lately as
researchers started to realize its wide applicability
ranges in engineering and physics. In the following,
the attempts devoted to this topic are reviewed in
chronological order.

A. Statement of the Problem

The basic problem can be stated as: "Given a

central matnix A_ € R™*"_find for the interval matrix
Al={A: | A-A, | < AA} a description for the set of
eigenvalues I' defined by

I' ={AEC:4x =\, A€AL x#0." (3.1

The problem can also be stated as: "Given an
interval matrix A! = [P, O], compute the location of
the eigenvalues by determining the upper and lower
bounds for each eigenvalue and eigenvector of Al
such that each interval must have minimum width."

B. Chronological Survey

In 1987, the first real attempt to solve the problem
has been tried by Hollot and Bartlett [21]. They
proved that the eigenvalues of an interval matrix Al
can be bounded by the roots of, what they called,
"edge polynomials". Such polynomials comprise the
edges of the convex hull of the characteristic
polynomials generated by AL They also showed that
the spectrum of an interval matrix with real
eigenvalues is completely determined by the
eigenvalues of its vertices.
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Rohn [43], parallel to the work of Hollot and
Bartlett, studxed the problem for symmetric interval
matrices A\, He concluded that the eigenvalues of 4,

A€E Al, range over the interval

A = INA, - S'AASY), M4, + STAASY),
where

Siadiag(sgn(xl‘),... ,n.(3.2)

,sg;u(x_i)),xji +#0,andi =1,2,...

In 1988, Lin etal. [30], following well-known
results on bounds for the eigenvalues of constant
matrices, studied the relation between the entries of
an interval matrix and the location of its eigenvalues,
while Juang and Shao [25] showed,in 1989, that the
eigenvalues of Al - [P, Q] are included in the union

of discs centered at \(4,) with radii E f;; and also
j=1
in the discs with the same centers but with radii

n

D3 fjis i =1, 2, ..., n; where fij and fji are the
j=1

elements of F = E + |T'| 84 |T|, T is the
similarity transformation TIACTn= A +E, A =diag
A(AY), s A (A)), and 6A = | AA| with AA =
2@-P.

In 1990, Rohn [45] generalized his previous results
of [43] to the case of nonsymmetric interval matrix
with rank one radius, i.e., when AA has rank one.

In 1991, based on invariance of properties of the
charactenistic vector’s entries, Deif [11] studied the
problem by considering the perturbed problem:

(A, + 8A)x = \x, AE A (3.3)

in which 64 < | AA|. For each such matrix 64,
there exists an eigenpair (A, x) obtained by solving
(3.3) which satisfies, by (2.14), the inequality
|Ax - Ax| < AA | x| 34)
By isolating real and imaginary parts of (3.4),
denoted by r and y respectively, the following

inequalities, that determine the solution set, have
been obtained:

INET =N XY - A.x"| < Ad|x7],
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[AxY + Ay x" - AcxY| < AAd[xY| (3.5)
Bounding TI', defined in (3.1), for a symmetric
interval matrix, Deif arnved to

xTA x - |x|TAA|x|

TAx+|x|TAA|x
ol ol el WP . (3.6)

xTx xTx

For a particular A;, Deif showed that it will range
over the same interval (3.2) given by Rohn [43]. In
the same paper [11}, Deif continued his investigation
to prove that for a symmetric interval matrix
Al=[P P,Q], if the components of ¥ pertaining to
some )\ have equal signs over Al then A; will range
over the interval \(P) < \; < )‘1(Qs) Hc also gave
a sufficient bound for A_ to guarantee that sgn(x')
remains invariant for all 84 €[-AA, AA]. For a
general real interval matrix AL, he proved that the
real and imaginary parts of an eigenvalue A; of

AcA! range over the intervals:

Re M\ (A -AAOS) < N\(A) < Re N\ (4, + AAOS),
Im \(A_-AAOS) < \A) < Im M4, + AAOS)).
(3.7)

where the denotes entry-wise

multiplication.

Also in 1991, Deif [10] proposed a method to
bound the eigenpairs of a skew-symmetnc interval
matrix. He rcporced that the eigenpair (jA;, 2), where
Z =x' + j and j* = -1, having a maximum X\,
satisfies the eigenvalue problem

symbol "O"

0 A_+AAOCS!||xt x
dd=A ] B8

-A_-AAOS! 0 y y
In 1992, Deif et. al. [13] suggested a method to
bound the eigenvccl:or x' of a symmetric interval
matrix using 8x' = ¥ (<x\8Ax’> / (\; - \))x', A € 4],

i ;t j
where (A, x') is an eigenpair of the central matrix A

and 64 is a perturbation done on A_.

Hertz [19], in 1992, presented a novel algorithm to
compute the minimal and maximal eigenvalues of an
nXn symmetric interval matrix Al & [P, Q). He

proved that the maximal eigenvalue A of Al
coincides with the maximal eigenvalue of a special
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set V; (C AY} of 2! symmetric vertex matrices,
whereas the minimal eigenvalue \ of A! coincides
with the minimal eigenvalue of another special set
v, (C A} of 2! symmetric vertex matrices. He
defined V; and V, as follows

= {a } €V, c Al such that
a-- = gy if 1=j,
if X; X; =0 and i},
= Pj if x>§<0 and 1 #j,
i=1,2, .., 2" (3.9)
and
V; = {a;} €V,CA' such that
a-- = Py if 1=},
= p; if x;x, 20 andi#j,
S T if xx <O and 1 # J,

i c; 2 2! (3.10)
when defining X;= max x T V,x and
x€B,
A, = min xTsz with B, = {x:x €ER", | x| =1},
x€B,
the main result reveales as
A= max XA; and A = min A, Q1D
1<is2e-l g™
Finally, Hertz reported that these extreme

eigenvalues are the endpoints of the exact root
clustering interval for the given AI, and the
algorithm amounts to computing the extreme
eigenvalues of 2" symmetric vertex matrices. These
results have been extended, also by Hertz [20] in
1993, to the Hermitian Toeplitz and real Hankel
interval matnces His main result was attained by
letting Al be the set of all Hermitian Toeplitz
interval matrices, i.c., Al - {A with elements
@) ket

with aOE[aO,BO] and a; € ([e;,8;] +j[v;,6;]) for
1<i<n-1 and j*=-1.

If Al c Al is the set of 4™ vertex matrices,
constituted by matrices with ay=0, then

max \;(A4) = By + max \;(4p),
min )\,(A) = Qg + min XI(AO)v

1= la 2, eeey 1 (3.12)
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A similar result has been obtained in [20] for real
Hankel interval matrices.

Also in 1993, Rohn [47] proved that a singular
interval matrix contains a singular matrix of a very
special form. This result was applied to study the
real part £ of the spectrum of an interval matnx.
Under the assumption of sign stability of
eigenvectors, he gave a complete description of ¥
by means of spectra of a finite subset of matrices.
The sign stability of eigenvectors has been studied
in 1994 by Deif and Rohn [14]. They put conditions
on the invariance of sign pattern of matnx
eigenvectors under perturbation.

In 1994, Commercon [8] suggested an efficient
algorithm to determine the eigenvalues of an nXn
tridiagonal symmetric interval matrix. The proposed
technique is based on modifying the Sturm
algorithm, used for real point matrices, by using
certain ratios of the Sturm sequence to provide
expressions that are free and can be used in interval
arithmetic evaluations.

To manage free interval matrices, Commercon
suggested the following sequence of ratios

P,(N)
2 34
Q1 (N) Po(h) = o
P,(\) gt i
. A =_l__= -—k—__l._._, =2,3,-o-,
i) P,_{(N) = Qi1 (M) 1 :

The intervals involved in these expressions are free.
If the required eigenvalues are denoted by

ALN] i=1,2,.

.,n, he conclude that

Ai = max(A) : nmax(\) <1

A; = min(\) : nmin(\) <i, i=1,2,.
where
n max (A) = max (n.(A\)) overall branches j,
n min (\) = min (n (M) overall branches j,
nj()\) = number of negatlvc or null ratios
Q;(M) in a branch j. (3.13)
Finally, Commercon reported that the intervals of
the resulting eigenvalues are exactly calculated and
the algorithm needs only twice as many operations

as the real Sturm algorithm.
In October 1994, Mori and Kokame [36] studied a
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certain class of interval matrices characterized by the
property that the eigenvalues of any real linear
combination of member matrices are all real. It is
obvious that symmetric interval matrices are
included as a subclass. For this class, a method has
been suggested to estimate the locations of
eigenvalues, as well as upper and lower bounds of
each eigenvalue. The main result of Mori and
Kokame [36] can be summarized as:

If A = [P, Q] is an interval matnx, of the
prementioned class, then for every A € A'and any
1=1,2,..,n,

N - p(@-P) < N(A) < N(P) + p(Q-P),

N - p(AA) < N\(A) < NA + p(AA4). (B.14)
where p is the spectral radius, A_ and AA are central
and uncertainty matrices defined in (2.4) and (2.5),
respectively.

It 1s worth noting that, from this survey, little is
known regarding the interval eigenvalue problem,
compared with the eigenvalue problem of point
matrices. This is because the research began to
emerge lately. It is expected, since linear interval
equations have occupied researchers for more than a
decade, that the interval eigenvalue problem, which
is by far more intricate, will make them busy for
some time.

4. APPLICATIONS

Although the interval eigenvalue problem appeared
in the literature few years ago, it has been applied to
some applications in Engineering and Physics. In the
following, some applications will be presented.

A. Stability of Interval Matrices

The problem of stability of interval matrices has
been recently extensively studied due to its
applications in control theory, e.g. cf [39] and the
references contained therein. Motvated by
robustness analysis of state-space models with
parametric uncertainties, interval matrices have
become an important choice in representation of
uncertain control systems. This subsection gives a
chronological survey on interval matrices for various
versions of sufficient conditions upon stability
properties.
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A-1 Definitions:

Def. 1: An interval matrix A! = [P, Q] = {4 :
P<A<Q} is said to be stable if each A € A!
is stable, i.e., has all its eigenvalues in the
open left-half of the comp]ex plane [21].
An interval matrix A! is said to be h-stable
if for each A € A, Re(\,(4))<-h, Vi, for
some h=0 where M\,(A4) denotes an
eigenvalue of A [5].

A symmetric interval matnx Alis said to be
Hurwitz (Schur) stable if and only if the
eigenvalues A, i=1 2, ...n, of the symmetric
vertex matrix V of this set satisfies

Re(\)<0, (| N | <l) [19].

Def. 2:

Def. 3:

A-2 Chronological Survey:

The research work on stability of interval matrices
was established by constructing quadratic Lyapunov
functions [4] and [55]. In [55], a common Lyapunov
function has been sought for the entire set of Al
while in [4] an adaptive Lyapunov function has been
constructed.

In contrast to these Lyapunov-based methods, a
frequency domain approach is used in [3], [28], [54]
and [56]. The approach is characterized mainly by
the eigenvalues but, however, it is far from easy to
be inferred from given information, i.e., upper and
lower end matrices P and Q, respectively.

In 1987, Hollot and Bartlett [21] proved that the
eigenvalues of an interval matrix A! can be bounded
by the roots of edge polynomial. They showed that

testing of at most 2"'2 certain vertex matrices for

stability is sufficient for verifying stability of nXn

interval matrix with real eigenvalues. This upper

bound has been reduced to 2™} by Rohn [46]. This,

of course, is stll exponential in n. Rohn [46]

considered a special case where testing only two

matrices is needed. This special class of interval

matrices is specified by the following four properties:

1. each A € A! has n real eigenvalues numbered in
such a way that )\I(A)S)\Z(A) St S)\n(A);

2. xn,(AT)o\ (A) for each A, AT € Al;

3. for Al = [P, Q], Q-P is a positive matrix of rank
one;

4. there are yz €Y, where

= {yER", Y= +1 for j=1,2,...,n},
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such that for each A €A! there exists an
eigenvector u and a left eigenvector v, both
pertaining to A (A), with zu;>0, y;v;>0, for
1=1,2,....n.

Rohn [46] reported that if Alis an interval matrix
satisfying these four conditions, then it is stable if
and only if both matrices Ay,z and A_y’ are stable,
where :

Z

- qu if ini = -1

In 1988, the concept of nonsingular M-matrices has
been introduced [29]. Their properties are used in
testing the stability of matrices, as shown in [5], as
follows:

1. Construct the matrices W and U as

W= {Wij}’ w; = 0 for 1=j
_ max{|pj|,]q;|}
IQijl

for 1 # J,

and
U" {uu}, ulj = lq” I fOf i=]
= -max {|pj;|, | q;j | Hori =],

2. Calculate p(W), if U is a nonsingular M-matrix
then p(W)<1 and A! = [P, Q] is stable if q;;<0

Also in 1988, Soh and Evans [50] suggested a
procedure to determine a maximal positive Z such
that the matrix 4 = A+ E,A€ AI, has eigenvalues
in the left half of the complex plane. Their
procedure involves a finite number of constrained
maximizations of convex functionals.

In 1989, Juang and Shao [25] applied Gershgorin’s
theorem and its extension, suggested by Argoun [3],
to estmate the location of the eigenvalues of
matrices and to get useful conditions for stability of
interval matrices. They reported that if Al is written
as in (2.6), then it is h-stable if

n
Re(\)) + ¥ fij<—h, i=1,2,...,n, h=0
i=1

where A; and f;; are defined in Section 3.
In 1990, Soh [51] studied the testing of Hurwitz
(Schur) stability of symmetric interval matrices Al
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He found that the set Al is Hurwitz (Schur) stable if
the symmetric vertex matrices VsI over Al are
Hurwitz (Schur). To apply this condition, one has to

test the stability of 2(0+0)/2 yortex matrices.

Also in 1990, Juang et. al. [27] have provided some
sufficient conditions for all A€ A! to have their
eigenvalues located in the open left-half of the
complex plane. After Juang’s approach using root
locus [24], these new conditions require the
calculation of only the spectral radius of a single
matrix derived from the end matrices P and Q of . o4
All the results of [27] are simple consequence of an
extension of Gershgorin’s diagonal dominance
theorem which was obtained previously by Juang
[26].

In 1992, Hertz [19] proposed an algonthm to
compute the extreme eigenvalues of an nXn real
symmetric interval matrix Al As immediate
corollaries of his algorithm, he obtained strong
necessary and sufficient conditions for testing
Hurwitz (Schur) stability of A! by testing stability of
2™1(2™) symmetric vertex matrices, respectively. He
reported that A! is Hurwitz stable iff the set of 2™
symmetric vertex matrices V,, defined in (3.9), is
Hurwitz and A' is Schur stable iff the set of 2"
symmetric vertex matrices V;(JV,, where V, is
defined in (3.10), is Schur. Hertz also proved that
the results of Soh [51] for testing Hurwitz and Schur
stability are, then, significantly simplified. The
reduction factors are

Fy = 2(n?-n+2)/2 4 Fg = 2(n?-n)/2

Also in 1992, Chen [5] considered the h-stability
properties of real interval matrices and gave
sufficient conditions for these properties, based upon
Gershgorin’s theorem and its extension [3] and [25].
Chen reported that for an interval matrix A! = [P, 0],
assuming that q;+h <0 for some h >0, the tightest
condition to be h-stable is p(Wp)<1, where the
matnix W, is defined by

Wh = {le}, wij = 0 for i‘j
_ max{|p;,]ql}

for i #).
lqi;+h]|

This condition improved those conditions provided
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by Lin et. al. [30], and coincides with those given by
Heinen [18], Liao [28] and Xu [54] in the case of
stability using h=0. Relations between stability of
interval matrices and synthesis of robust regulators in
linear interval dynamical systems has been
introduced, also in 1992, by Yefanov et. al. [57].

In 1993, Rohn [47] applied his results on singular
interval matrix to give the real part of the spectrum
a complete description by means of spectra of a
finite subset of matrices. He also formulated a
stability criterion for interval matrices with real
eigenvalues that require checking for only two
matrices for stability.

Based on Algebraic Riccatti Equation (ARE), Han
and Lee [16], in 1993, presented new sufficient
conditions for stability of interval matrices. Their
proposed conditions have no restriction on the
matrices, and they are less conservative than that of
Juang et. al. [24] and Yedavalli [56]. Also in 1993,
Wang and Michel [52] investigated Hurwitz and
Schur stability of interval matrices using Lyapunov
second method together with techniques of interval
analysis. Their suggested method requires the check
of the definiteness of 2™ corners of certain interval

matrices rather than the 2®**")/2 comers of Soh
[51].

In 1994, Mori and Kokame [36] derived upper and
lower bounds for every eigenvalue of a class of
interval matrices (containing symmetric interval
matrices). They reported that neither Hurwitz nor
Schur property of interval matrices can be concluded
from vertex matrices in general. Eigenvalues
computation of only two matrices is enough to reveal
the upper and lower bounds for every real
eigenvalue of a matrix belonging to this class. As
extreme cases, they can obtain sufficient conditions
for Hurwitz and Schur stability of this class of
interval matrices and those conditions for positive
definiteness of symmetric interval matrices. Their
proposed conditions can be summarized as follows:
1. any interval matrix Al< [P, Q] in the suggested

class is Hurwitz stable if p(Q-P) < -A\(P), and
Schur stable if
A ((P)+p(Q-P)<1 and )\n(P)-p(q-P)»l.
2. any symmetric interval matrix A' = [P, Q] is
positive definite if N (Q))>p(Q,-P,).
Here Ay 2\, 2...2\ and p is the spectral radius. It
is clear that the stated conditions of Mori and
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Kokame save much computational cost for checking
the stability properties of large scale interval
matrices, that is because their method requires
computations of extreme eigenvalues of only two

matrices rather than 2(“2’“)/ 2 matrices of Soh [51]
or the 2™! matrices of Hertz [19].

B. Pole Assignment Problem (PAP)

In linear control theory, an effective method of
modifying the dynamic response of an n-state m-
input linear multivariable system % =Ax + Bu is the
placement of the closed-loop poles (eigenvalues) at
arbitrary preassigned locations in the complex plane.
This can be achieved by state or output feedback.
This problem, which is referred to as pole
assignment problem (PAP), has emerged in the last
two decades as one of the important topics in
modern control theory. This distinction stems from
the fact that all of the dynamical modes of the
closed-loop system response, for a given initial state,
are at the designer’s disposal once the eigenstructure
is specified. Indeed, the eigenvalues are the
principal factor that determine the rates of decay (or
rise) of various portions of the system response. The
right and left eigenvectors, on the other hand, are
dual factors that, together, determine the shape of
this response. It is obvious that the PAP is
essentially an inverse eigenvalue problem. The main
interest of numerical analysts is to get robust
solutions to this problem, i.e., solutions which are
insensitive to parameter’s variations. At this point,
the need to use interval analysis has been emerged
in the new research work.

In 1991, Deif [10] defined the problem of inverse
interval eigenvalue problem by obtaining bounds of
AA such that ) is confined to a box in C, i.e.,

Re(A,) < Re(\) < Re(})),
Im(A,) < Im(\) < Im(X;).

with \; = [Li, Xi], i=1,2,....,n, are given for A € AL
In 1994, Alefeld [2] described an algorithm with
which one can verify solutions to an additive inverse
eigenvalue problem. The algorithm is based on
Newton’s method using new criterion for
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terminating the iteration. In addition, the algorithm
yields tight interval bounds for the solution of the
problem, thus guaranteeing most of their leading
digits in a given floating-point system.

With interval matrices, uncertain control systems
design, synthesis and analysis have become more
applicable to scientific computations. For more
details, the reader may consult the recent
publications in automatic control and its applications.

C. Application in Atomic Physics

In 1994, an application to atomic physics has been
presented by Seco [49]. The aim of his work is to
produce lower bound to the ground-state energy of
an atom of nuclear charge Z. The basic idea is to
determine a lower bound to the Coulomb interaction
energy of Z electrons by constructing a radial
function V(r) and a constant C that reduce the
original many-body problem to simpler analysis of
the negative eigenvalues of the one-electron
Hamiltonian. In order to find all relevant
eigenvalues, Seco used algorithms based on interval
analysis, where the elementary operations between
computer-representable numbers are replaced by
operations on suitable intervals containing them.

D. Computer Programming

To make interval analysis, in general, more easier
in dealing with a computer, the most important trial
is how to replace floating-point arithmetic with the
more advanced range arithmetic.

In 1993, Aberth and Shaefer [1] described how the
programming language C++ can serve as a vehicle
for this replacement. This replacement will make it
easier to guarantee accurate answers to scientific
computation problems. They also discussed the use
of range arithmetic to solve precisely the eigenvalue
problem for square matrices that have modest size.

E. Structural Analysis and Vibrations

The eigenvalue problem for determining natural
frequencies and vibrating modes of a system in the
case of system matrix entries are given as intervals
cannot be solved by the known methods due to the
prohibitively large number of solutions of the
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eigenvalue problem of point matrices.

In 1993, Dimarogonas [15] considered vibrating
systems having interval system parameters, interval
initial conditions, and interval forcing functions.
Every system has been modeled using interval
calculus and the resulting eigenvalue problem, for
determining natural frequencies and vibrating
modes, has been solved but the results, as he
reported, did not meet his satisfaction. He suggested
some modifications for future work.

In 1994, Chen et. al. [6] suggested a perturbation
method for computing the upper and lower bounds
of eigenvalues of a structural vibrating system with
interval parameters. The eigenproblem of the
uncertain (interval) structure has been expressed by
equations consisting of the uncertainties. They
reported that the solution is powerful and efficient
especially when the parameters have small interval
width.

5. RELATED TOPICS

In this section, two topics, which are closely related
to the interval eigenproblem, are surveyed. We shall
give a brief description of the problem of Singular
Value Decomposition (SVD) of an interval matrix
and the problem of eigenpairs enclosure.

A. Singular Value Decomposition (SVD)

Computing the singular values of a real interval
matrix A! can be done by bounding the eigenvalues
of (A)TAL Such an approach will overestimate the
exact bounds. In 1991, Deif [12] investigated a new
approach and he showed that the upper and lower

bounds of the real set T'; defined by

T; = A : ATAx = \xi, A €4))
are
(x)TATA x 2 [(x)T|(AA)T |24 xi+3Ax}|

(xi)Txi

max
s (11) =
min

Thus, A\, (max. or min.) satisfies the eigenvalue
problem:

{A.TA +(5,(AA)TS, /(24 +64))} x' = \x!
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