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The microbending loss and the stresses induced by both the temperature variation and the axial
strain in multi-coated optical fibers are studied. Optical fibers with two up to six coatings are
considered. A recurrence relation is obtained for the lateral pressure on the glass fiber, from which
the microbending loss and the stresses are calculated. It is found that the microbending loss can be

minimized by increasing the number of coatings.
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1. INTRODUCTION

Optical fiber cables must be designed so that
transmission  characteristics of the fiber are
maintained after the cabling process and cable
installation. Certain problems may occur either
within the cabling process or subsequently which can
significantly affect the fiber transmission
characteristics. The most important one is the
meandering of the fiber axis on a microscopic scale
with, the cable form. This phenomenon, known as
microbending, results from small lateral forces
exerting on the fiber. These lateral forces are caused
externally by axial stresses and internally by thermal
ones. This yields losses due to radiation in both
multimode and single-mode fibers.

Mechanical and thermal stresses play an important
role in optical fibers, so, they have been studied
extensively. Several reports have appeared on the
temperature characteristics of jacketed optical fibers.
D. Gloge computed the excess transmission loss
resulting from statistical surface variations and lateral
pressures affecting the fiber [1]. The loss induced in
optical fibers by random bends in the fiber axis was
studied experimentally by winding fibers under
constant tension on to a drum surface that is not
perfectly smooth [2]. The shrinkage of a plastic
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jacket at low temperature causes microbends in the
optical fibers and consequently an excess loss which
increases suddenly at low temperature due to the
fiber buckling [3]. The thermal stresses and the
added transmission loss in both single and double-
coated optical fibers at low temperature were
calculated by Suhir[4] and Shiue[5]. Shiue evaluated
the microbending loss induced by axial strain in
double-coated optical fibers as well as the thermal
stresses in tightly jacketed double-coated optical
fibers at low temperature [6,7]. However, to the best
of our knowledge, no work has been done on the
problem of microbending loss induced by both
external axial strain and thermal stresses in multi-
coated optical fibers at low temperature. In this
study we derived a recurrence relation for the lateral
pressure and, consequently, the microbending loss in
a multi-coated optical fibers. The objective of this
study is to determine the best number of coatings
which gives minimum added microbending loss.
This can be accomplished by noting that the lateral
pressure should be tensile, ie., it should have a
negative value. As a result, the optical properties of
the fiber will not be affected under this condition

[6].
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2. ANALYSIS
2.1 Lateral pressures
2.1.1 Thermal stresses

Figure (1) illustrates the fiber under consideration
which is constructed of a glass (core and cladding)
coated by n polymeric layers. The radii of glass fiber
cladding, primary coating, and nth coating are ry,r;,
and r, respectively. The optical fiber is assumed
infinite along the axial direction. Because the
physical properties (e.g., Young’s modulus and
coefficient of thermal expansion) of the glass and
polymeric coatings are different and assuming zero
stress in the system at the initial temperature, stress
will be built up after the temperature drop.
Assuming the glass fiber is rigid compared with the
polymeric coatings and the viscoelastic behavior of
polymeric coating is not considered, then the
thermal stresses in the mult-coated optical fiber can
be solved starting from the Lame formulae as follows

[8]:

Figure 1. Schematic diagram of a multicoated
optical fiber.

The Lame formulae for the radial stress, o,, and the
tangential stress,0y, in a circular thick-walled tube
subjected to internal pressure p; and external
pressure p,. are [8]:
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where a and b are, respectively, the inner and outer
radii of the wube. The radial (e,), tangential (¢p) and
axial (e,) strains are given by [8]:

e,=-a AT+ % [0,-v(os+0)],  (2-2)

ee=—aAT+-é[oe—v(oz+o,)], (2-b)

and
ez=—aAT+—11§[cl—v(o,+oe)], (2<)

where E, o, and » are the Young’s modulus,
coefficient of thermal expansion, and Poisson’s ratio
of the material, respectively. Here, the temperature
drop AT is larger than zero. Because the fiber is
assumed infinite and both ends are fastened, the
plane strain is adopted, i.e., the axial strain ¢, is zero.
Due to geometric symmetry, only the radial
displacement u is not zero.

The radial and tangential strains are related to the
radial displacement u by the following equations [8]:

3

€e=

- e

Using Eqgs.(1), (2) and (3), the radial displacement,
u, is obtained as:

u=-a ATA+ W)+ —2Y -2, -) - L@, -p)l, (@)
E(1-v?) r

where vy = a/b.

Equation (4) is used to evaluate the thermal radial
displacement at each boundary starting from the
cladding and first coating interface. We’ve obtained
general forms for the thermal displacements, U g
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“and u;;, for both of the outer boundary of the coating
i-1 and the inner boundary of the coating i as:

L1+, )
E._,( '721-1)
[Zpi—lyzifl(l “vi )P (1 -2v,_ +v% )], (5-a)

U =05 AT+, )+

and

r,_,(1+v)

Ei(l ~Yi-1 ¥
2(1-v)p,.)

= e AT+ V)L + [p; + Py (1 -2v) -

(5-b)

where 1 = 1,2,..,n. The conditions for compatibility of
displacements are [8]:

i (6)

Usmg hq (6) and after algebraic manipulation, one
can geta recurrence relation for the lateral pressures
as:

Rn-Jpn*r % Qn -j
where j = 0 1, 0= 1 and the coefficients R . g Q -
T, 4 rare. funcuons of the fiber and coatings
parametcrs Equauon (7) can be used to calculate

the. lateral pressure on the fiber glass for any number
of coatlngs :

n Jpn ~j=1 (7)

2.1.2 Axial strain ,

In this case, the optical fiber is subjected to an
external axial strain ¢,. The stress-strain relations are
- obtained by putting AT = 0in Eq.(2). Eliminating o,
from these relations, one can get the tangential and
radial strains as:

1 Ve
60—."1/62 : EV ‘(09— 1_;), (8-a)
and
1_‘,2" ¥
€ =-VE, + (o - ) (8-b)
1-v X

In a similar manner to the thermal stress analysis,
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Egs.(3) and (8-a) can be used to: get the radial
displacement, u, as:
r(1-1%) Vo,
=- - 9
u=-ver+——7=(dp 1_V) &)

By comparison, Eq.(7) can be used in the calculation
of the lateral pressures, however the coefficient Q, ;
will be changed.

2.1.3 The general case

Here the optical fiber will subject to both external
axial strain and temperature variations. The total
axial stress is given directly from Eq.(2-c) as:

0,=¢,E+aATE +v(o,+0y). (10)

Following the same procedure previously described,
one gets the total radial displacement as:

(1 “VZ) [00— Vo,

u=-aATr(l+p)-ve,r+ —].(11)
E -y

Again, changing the coefficient Q ., then Eq.(7) 1s
practicable. Hence, 'using this equatron the lateral
pressures can be evaluated as a function of the
physical properties of the optical fiber as well as the
environmental conditions.

2.2 Microbending loss

The compressive lateral pressure, py, in the glass
fiber would produce excess microbending loss, so it
should be minimized [4]. For j = n-1 in Eq.(7) the
lateral pressure, p;, can be written in the form:

Q1

i 12
R, (12)

P1=

The microbending loss, a, can be evaluate_d from the
lateral pressure, p;, through the linear relation [6]:

= Gpl’ (13)

where G is a constant, which has the experimentally
determined value of 0.0029 (dB/km)/MPa [5].

Obviously, the developed recurrence relations can be
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used to calculate the lateral pressure and
consequently the microbending loss induced in
multi-coated optical fibers.

2.3 Normal stresses

Based on Eq.(1) and putting a = 0, P; = 0 and
P.=P;, the radial stress ¢, and the tangential stress
0y in the glass fiber will simply equal to -p;.
However, the corresponding stresses in the ith
coating will have forms:

2 2 2
_ iR P | P i1 Pistli

= ; (14-a)
(et -r% ) S
and
2. .2 2
g 2B (Pi+1-P)  Pif i-1=Pia1ti (14-b)
céirfRery) 5 e

wherer, | <r1r < 1;

In the case of axial stress, g,, it is desirable to
discuss the general case, where thermal stresses are
included. According to Eq.(2), o, in the glass fiber
and in the ith coating are given respectively by:

0, = Eqa,AT + Ege, - 2ygp; 0 < 1 < 1y (15)

and

2 2
<Jz=2v12‘—r%--gﬁlri +E (e, +o,AT) y_,sr<r,  (16)
7K

It 1s clear that ¢, is uniform within each medium.
However, both ¢, and oy are dependent on r except
for the region 0 < r < 15, Eq.(14). Thus, the
tangential and the radial stresses are uniform in the
glass fiber. This will not be the case if any lateral
pressure on the core-cladding interface is considered.
Eor instance, if py is not equal zero, then p; will be
given by:

Q1 , poTy

= 1
R, R, {an

P1 =

and p,, will be calculated from Eq.(7) by allowing the
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value n for j. Hence, the Young’s modulus, the
coefficient of thermal expansion, and Possion’s ratio
must be considered separately for both the core and
cladding in any calculations. In addition, o, and o
are independent on r in the core only.

Equation (14-a) indicates that as r increases, the
radial stress changes from the initial value -p, till the
final value p_,; which is assumed to be zero.
However, the sign of the lateral pressure depends on
the values of E, p, and 7. Therefore, the radial stress
may increase or decrease as 1/r* depending on the
sign of the lateral pressures. On the other hand, the
dependence of oy on r is the opposite, because of
the negative sign in Eq.(14-b).

3. RESULTS AND DISCUSSION

A computer program is developed for the purpose
of lateral pressure calculations in optical fibers. For
evaluation purposes, this program has been used to
calculate the lateral pressure p; using the parameters
in the first and second designs of Shiue [5,6]. The
results are identical to that obtained by in both
cases; namely the axial strain and temperature
variation. Furthermore, the lateral pressure relations
derived by Shiue are obtained analytically [5,6]. This
gives us the confidence regarding the wider use of
the model in the case of multi-coated optical fibers.
The value of p; depends on the elastic properties of
both the optical fiber and the coatings as well as
their radii. In addition, for a real polymeric coating
material the Young’s modulus, E, and the coefficient
of thermal expansion, «, are dependent on each
other and could be characterized by a linear
relationship [4]:

- _E
a=a/(l B ), (18)

*

where ax is the coefficient of thermal expansion for
a polymeric material with a very low Young’s
modulus, and E. is the Young’s modulus for a
polymeric material with a very low coefficient of
thermal expansion . The values of a« and E, are
6.89%x10™ oK and 11.35 GPa, respectively [4].

We have considered the general case in which the
optical fiber is subjected to a temperature drop AT
= 100 oK as well as an axial strain ¢, = 0.001 [9].
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Furthermore, the parameters of the optical fibers -

under consideration are shown in table 1. Forn = 2
(double coated optical fiber), these parameters are
those considered by Shiue [6]. In addition, the
optical fiber is assumed to be ngid so that Ej >> E;
and o << a4, and the cladding radius 1y = 62.5 pm.

Table 1. The parameters of the optical fibers
under consideration.

n v E (MPa) | r (um)
1 ]| 035 10 100
2 1035 1200 125
3 1035 2755 200
4 1035 3600 250
5 }0.35 4290 400
6 | 0.35 5790 500

Based on Eq.(18), the effects of thicknesses of the
primary and the secondary coatings on the lateral
pressure in the glass fiber are shown in Figures (2)
and (3), respectively.
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Figure 2. Effect of thickness of primary coating,
1yt 0n the Jateral pressure, Py, in the glass fiber.
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Figure 3. Effect of thickness of secondary coating,
1,/t;, on the lateral pressure, Py, in the glass fiber.

It can be seen from Figure (2) that p; decreases
with the thickness of the primary coating to very
small positive values except for the fiber with n = 6.
In this case, p; becomes negative for rllrlgl > 1.62,
and consequently there is no added microbending
loss. Therefore, it is recommended that the
thickness of the primary coating should be increased.
It may be also noted from Figure (3) that p, takes
small negative values at n = 6 provided that ry/r; >
1.26. Obviously, as the number of coating increases
the curve of p; vs r /r, | approaches zero.

The influence of Poison’s ratio of the primary
coating on the lateral pressure is illustrated in Figure
(4). For n=5 and n = 6 p, takes the closest values
to the zero, and it turns negative at y; = 0.45 and
0.36, respectively. However, as »; increases the
lateral pressure, in the former case (n = 5), takes
higher negative values faster than the later (n = 6).
Therefore, the fiber with n = 6 is more practicable
since it maintains the smallest negative values for p,
when »; changes appreciably. It can be observed
from Figure (5) that p, is negative for n = 6 only at
vy > 0.36.

Figure (6) shows the relation between p; and E;.

- Generally, p; increases with E; and takes higher
positive values, so, there is a microbending loss in

this case. Obviously, The Young’s modulus of the
primary coating must be assigned small values to
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So, it is clear that as n increases the lateral pressure
on the optical fiber decreases. In addition, the lateral
pressure can be kept tensile with negligible values
by choosing the suitable coating materials. On the
other hand, p; should be assigned a suitable negative
value to avoid any transition to the compressive
region.

4. CONCLUSIONS

The microbending and the stresses induced by
both the temperature variation and the external axial
strain in multi-coated optical fibers are studied. The
microbending due to the temperature variation is
additive to that induced by the axial strain. Both the
microbending losses and the stresses are proportional
to the temperature variation and to the axial strain.
In addition, they depend on the physical properties
of the coating materials as well as their radii. In
order to maintain the optical fiber without excess
microbending loss the lateral pressure p; must be
tensile. The conditions under which p, is tensile are
determined for the optical fiber with n = 6. It is
found that the lateral pressure py, and hence the
microbending loss, on the glass fiber can be
minimized by increasing the number of coatings.
The final selection of the most suitable coating
design must be based on the material, the optical,
the chemical, and the cost consideration.
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