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ABSTRACT

The article introduces an optimal solution for a beam resting on two - parameter non -uniform elastic
foundation. The beam has constant cross section, and the stiffness parameters of the supporting
foundation vary along the beam length. For a specified total stiffness of the foundation, the optimal
solution yields the foundation stiffness parameters distributions that minimize the beam total
compliance. Beams subjected to uniformly distributed loads and having various boundary conditions
were considered. The optimal solution of the foundation first parameter k; was found to exhibit
singularity at the beam supporting ends. Such singularity has not been observed in the foundation
second parameter k,, except for beams with hinged supports. The optimal solution performs saving,
relative to Winkler model, in the total beam compliance equal to 43.1% in clamped - free beam case
and 86.4% in the other beam cases. For hinged -hinged, clamped - clamped and clamped - hinged

~ beams, the optimal distribution of the first parameter k, requires infinitely stiff supporting foundation

- atthe end supports. ‘As we move away from the beam supports the optimal foundation first parameter
stiffness decays to'its lowest value at the beam mid - span. In beams of clamped - free type supports,
the parameter k;, in contrary to the parameter kj, has the highest (singular) value at the clamped end
and the lowest value at the free end.

Keyword: Beams on elastic foundation, Two-parameter elastic foundation, Non - uniform elastic foundation,
Optimization, Optimal design.

INTRODUCTION

- (1981).

Beams on elastic foundation is a very common

' analysis problem in engineering applications. Many

engineering mechanics problems - can be well
modelled as beams resting on an elastic medium.

- Typical examples are strip footings, response of a

pile' to horizontal loading, behavior of a long pipe
line, railway tracks, sublaminate in a laminated
structure and vibrations of ships. Winkler elastic
foundation model, which was used by the vast
majority of work published thus far, and that consists
of infinitely many closed-spaced linear springs, is a
one - parameter model. The limitation of this model

" is that it assumes no interaction to exist between

springs. This drawback is overcome by several two
parameter models suggested in the literature, Kerr
(1964), Vlasov (1966), Selvadurai (1979), and Scott
Mathematically, all these models are
equivalent and differ only in the definition of the
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foundation parameters.

Recent publications on beams resting on two -
parameter elastic medium aimed to develop a beam
element - stiffness matrix for direct use in finite
element applications, Zhaohua (1983), Eisenberger
(1985), Karamanlidis (1988), and Valsangkar (1988).
Buckling and Vibration behaviors are included in
some of these analysis. Clastornik et al (1986) have
limited their formulation to Winkler type elastic
foundation with. supporting stiffness varymg as a
general polynomial of x. :
Optimization of elastic foundations was trcatcd
previously, Szelag (1979), Taylor et al (1984), Plaut
(1987), and Dems (Ref. 3). Szelg and Mroz (1979)
considered hinged - hinged beam, where a total
foundation stiffness was optimized for a given
fundamental frequency of free vibrations. Taylor and
Bendsoe (1984), and Plaut (1987) solved the

C 109



ABDELMOHSEN: Optimal Solution for a Beam Resting on Two-Parameter Non-Uniform Elastic Foundation

situation of beams or plates with different boundary
conditions attached to non - uniform elastic
foundations. Plaut work was a continuation of the
work presented by Dems et al (Ref. 3).

In the present analysis, we consider a beam of
constant cross section subjected to uniformly
distributed load and attached to two - parameter non
- uniform elastic foundations. For a specified total
stiffness of the foundation, the distribution of the
foundation stiffness is determined to minimize the
beam total compliance.

FORMULATION

The beam has a constant bending stiffness EI, total
length L, and subjected to a downward uniformly
distributed load q. It is supported by two -
parameter elastic  foundation with stiffness
parameters K;(X) and Ky(X) respectively. The
horizontal coordinate is denoted by X with 0 < X <
L. Under the followmg non-dimensional quantmes,
X = X/L W o= (EI/qL W, k; = Kl(L /ED), k, =
KZ(L [EI), the equilibrium equation is given by,

w - (kz w) +kiw=1 1

Where w is the downward displacement and ()’
indicates differentiation with respect to x. The non-
dimensional total stiffness K is specified as,

Jok, +k, )P dx =K, @

Where p can assume any value. The compliance Q
is defined by the equation,

Q=[o wdx 3)

The optimization problem is stated as; for 2 given
load q, total stiffness K-, and value of p in (2), find
the distributions of k,; and k, as function of x that
minimize Q subject to (1) and the designated
boundary conditions. Therefore, a functional is
defined in the form,

F=[owdx-[o® (W - (k,w) +k w-1)dx -
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Where ®(x) and pu are Lagrange multipliers.
Stationarity of F with respect to w leads to the
following adjoin equation,

o - (ky &) + P ky = 1 (5)

and P satisfies the same boundary conditions as w.
Stationarity of F with respect to the stiffness
parameters k; and k, leads to the optimality
conditions

dw+ pu(k +k, P! =0,and (6.2)
dw + p [ (p-1) (p-2) (k; + k)P (k" + k™) +
(p-1) (kg + kP2 (ky” + k) 1 =0 (6b)

We note that Eq. 5 is identical to Eq.1 and both
equations satisfy the same boundary conditions.
Hence, Egs. 6 become for the case of p = 2,

Wl (kg +ky) =0 (7.) |

W)+ pky” +ky,) =0 (7.b)

Setting p equals to 2 is intended only to simplify the
analysis. The optimal solution, Plaut (1987) for the
case of p equals to 1 and k, equals to zero composes
of a uniform supporting medium of constant stiffness

equals to l/ﬁf
It can be verified that the optimization problem

consists of the following set of differential equations;

w -k, w) +k w=1 (8.a)
2ww” +w?=0 (8.b)
Wl pu(k +k;)=0 (8.c)

fo Gy +k ) dx = (1/p?) [ow* dx =Ky (8.d)

to be solved with the appropriate boundary
conditions to obtain w, k; , k, , and p. Equations
(8.b) and (8.c) ensure the satisfaction of Eqgs.(7).
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¢ length was used in the analysis.
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RESUL'TS AND DISCUSSION

‘Equations 8 are discretized using the finite
" difference formulation. The solution scheme starts
“““ ~ by solving Eq. (8.b) with the designated boundary

conditions to obtain w. Details of calculations are

‘shown in Appendix A. Lagrange multiplier p is then
- calculated from Eq. (8.d), where Ky is already
- specified. If Eq. (8.c) is substituted in Eq. (8.2), one

gets a differential equation in k, as shown in
Appendix B. Equation (B.1) is then solved with the

. boundary conditions listed in Eq. (B.2), using the

successive over relaxation method Ferziger (1981).

~ Analytical solution to Eq. (B.1) is derived in

Appendix C, Hildbrand (1976). Since w, p, and k,
are already known, the distribution k; can be found
from Eq.(8.c). Solutions of Eqgs. (8.b) and (B.1) were

~assumed to converge, if the assumed and the

calculated values agree w1thm a specified nurerical

- difference equals to 1 x 1075,

’

Close examination of Eq. (8.b) reveals that w
vanishes if either w or w” is zero. Accordingly, in the
optimal solution, boundary points of hinged - hinged
and clamped - hinged beams should behave similar
to clamped - clamped beam type. In case of clamped
- free beam type, w” is zero at the free end since
the moment vanishes at that end. This sets w” to be

- zero at the free end in the optimal solution.

Figures (1) and (2) illustrate the variation of the
ratios k;/Kr, and k,/K along the beam length for
various types of beam supporting conditions. For
hinged - hinged and clamped - clamped beams,
symmetry was not considered and the total beam
The optimal
solution for the three beams requires stiff supporting
medium near to both end points. In fact, the

. distribution of k; exhibits singularity at the supports.

This can be explained by examining Egs. (8.b), (8.c),
Appendix A and the boundary conditions shown in
Eq. (B.2). According to Eq. (8.b), w” has zero values

~atx = 0, and L for hinged - hinged beam where w

=w” = 0. Since k, is related to k,” by Eq. (8.c) and
fw- 1/w?)” as given by Eq. (B.2), this

" results singular values for k; over the supporting

- points. The same sort of argument could also be
- applied to the other two types of beams.

. clamped type support, Eq. (B. 1) reveals that k,” is
. singular over the support, which. yields singular

behavior of k; parameter, according to Eq. (8. c). As
we move away from the support, the optimal
stiffness decreases to the lowest value at the mid-

span.
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Figure 1. Distribution of stiffness parameter k;/kr
for hinged-hinged, clamped-clamped, and clamped-
hinged beams.
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Figure 2. Disuibution of stiffness parameter ky/k
for hinged-hinged, clamped-clamped, and clamped-
hinged beams.

- As shown in Figure (2), the stiffness pakametcr k,
possesses the highest value at the beam ends. The
lowest value for k, occurs at the beam mid point as

- in the case of k. The behavior of the parameter k,

at beam supports could be easily viewed through
examining Egs (B. 2), and Eq. (8. b). For hinged
supports(w = w” = 0 at x = 0, and L), hence
w'(o)=w" (L) = 0, from Eq. (8. b). The first of Eqgs
(B. 2) sets k, to be singular at x = 0, and L. Though,

.. the second of Eqgs (B. 2) shows k, to approach finite
_ values at clamped supports (W=w=0andw” # 0
atx = 0, L).
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Figures (3) and (4) depict the opumal stiffness
distributions for clamped - free beam type. As shown
in the previous cases, k; assumes singularity at the
clamped end. The distribution decreases rapidly as
we go further away from the support until it reaches
the minimum value at the free end. In fact, at the
free end, k; is almost zero. In contrary to the
previous cases, the stiffness parameter k, has
positive value in the clamped - free case. The
optmal stiffness shape of parameter k, is a slight
curve near to the support followed by a linear
variation extending to the free end, Figure (4).
Since the reactive pressure p(x) is defined as
Zhaohua et al (1983),

.
p¥)=-k; w-k, w )
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Figure 3. Distribution of stiffness parameter k;/kp
for clamped-free beam.

Therefore, once distributions of k; and k, are
found, reactive pressure at any point along beam
length becomes obtainable. And internal forces could
easily be calculated for design purpose.

It 1s clear that p(x) increases relative to Winkler
model values when (k,, w”) possesses positive value
as in the first three beam cases discussed above. The
same increase takes place in clamped free case,
where k, and w” share the same positive sign. In
the first three beam cases the optimal solutions
produce total compliance equals to 0.136 the total
compliance of non -optimized Winkler type
supporting foundation. This value increases to 0.569
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for clamped -free beam type. The savings in the
hinged - hinged, hinged - clamped, and clamped -
clamped beam due to optimality are equal. This
follows from examining Eq. (8.b) as demonstrated
above.

To shape the previous analysis into some practical
aspects, we convert Figures (1) and (2) to the
following equations;

kl-klo 0 SXSXO, XZ]"XO
kld-O X,<x<1-x, (10)
ang,
k, = k,° 0<x<x, x=21-x,
k=0 X, <Xx<1l-x, (11)
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Figure 4. Distribution of stiffness parameter ky/kp
for clamped-free beam.

Where k;° and k,° are the foundation first and
second stiffness parameters respectively. x, is the
length of the uniform stffnesses supporting
foundation measured from each of the beam
supports.

Figure (5) illustrates the effect of the distributions
given by Eqgs. (10) and (11) on the beam total
compliance for various values of x,. R® is the ratio
between the total compliance of the optimal beam
and the corresponding value obtained using Winkler
foundation model. k,° in Eq. (11) was taken equal to
-2 and -12 for hinged - hinged and clamped -
clamped beams respectively. These values were
extracted from Figure (2). The ratio k;° / K was
picked from Fig. (1), and kept constant with a value
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equal to 8 x 102 for both beam types.

Figure (5) shows the saving in the total compliance
is equal to 3% accompanied by using uniform
supporting stiffness with x, = 0.10. This ratio
increases to 37% for x, equals to 0.30. Certainly,
such savmg values depend strongly on the choice of
ko1 and k° 2 Vvalues for the uniform supporting
foundation. Yet, to the parameter x,.
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Figure 5. Effect of parameter x, on the optimal
savings of hinged-hinged and clamped-clamped
beams.

In case of clamped - free beam type, Figs. (3) and
(4) are transformed to the following relations;

kl"klo'mlx Xy <X SXZ ) (12)
kj=0 X > X,

and, “

ky=k+myx 0<x<1 (13)

Wherc k;° and k,° are set equal to 6 x 10° and 2 x
10* as advised by Figs. (3) and (4). m; and m, are
constants and are equal to 10 x 10° and 11.67 x 104
respectively. x, and x, have values equal to 0.10 and
0.70 respectively. The stiffness distributions shown
in Egs. (12) and (13) produce saving dependmg on
kol and kO » values, and equals to 12% in the total
beam compliance relative to Winkler model. This
corresponds to a ratio equals to 7.7x10 between k,°
and K.
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Eq. (10) through (13) are useful simulation to a
case, where extremely stff supporting zone of
limited length exists, even in a relative sense to the
rest of the layer, beneath the beam. The above
results advise the designer to locate beam’s supports
on the layer’s strong zones / lenses, that might exist
randomly beneath beams, especially the ones with
the infinite lengths. Though, but not included here,
statistical analysis should be incorporated in this
case, so as to a complete probabilistic design
becomes possible, Baker (1989).

A more direct, reasonable and practical application
for the above analysis is to support the beams on a
rather enlarged supports / footings to ensure the
presence of the required excellent stiff medium
close to and at beam supports.

CONCLUSION

In the present article, an optimal solution for a
beam resting on two - parameter non - uniform
elastic foundation is given. A variational functional is
developed and used to derive the optimality
condition that minimizes the total foundation
displacement (compliance). The optimal solution for
hinged -hinged, clamped - hinged, and clamped -
clamped beam consists of infinitely stiff supporting
foundation at both beam ends. Foundation stiffness
are then decaying to reach their minimal values at
the beam mid - span. The optimal distribution of
the foundation first stiffness parameter k; for the
clamped - free beam requires infinitely stff
supporting medium at the support. The first
parameter value is then rapidly decaying to vanish at
the free end.- In contrary to k;, the optimal
distribution of k, parameter is close to a straight line.
In the first three type of beams, the optimal solution
produces a total foundation compliance equals to
13.6% of the total compliance of a Winkler elastic
foundation model. The total compliance of an
optimized clamped - free beam supporting
foundation is 56.9 % the corresponding value of
Winkler model. Needless to say, these optimal
values are truly theoretical, since singularity
requirements on k;, and k, at hinged supports are
rather mathematical results, and practically hard to
be satisfied, unless it exist in a relative sense.
Develop uniform, extremely stff supporting
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foundation at and near to end points for hinged -

hinged, and

clamped -clamped beams performs

saving in the beam total compliance increases with
the length of the supporting foundation. Locate
beams on quite large supports / footings furnishes

ideal

condition to reach the optimal compliance

saving.
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Appendix A

Equation (8.b) has the following finite difference form, Ferziger (1981)..

2 2 2 .
16 W -8 wy (Wi + W) + Wiy - 2w, Wy, +wi, =0

(A.1)

and to be solved for the root w, The boundary conditions are, w=w"=0atx=0,and L,
for hinged - hinged beam, w = w’ =0 at x =0, and L for clamped - clamped beam, and w
=w' =0,atx=0,and w’ =w""~" =0 atx =L, for clamped free beam. In case of clamped -

hinged, w=w" =0atx=0,andw=w" =0, atx=L.

Appendix B
If Equation (8.c) is substituted into Equation (8.a), the resulting differential equation

in ky(x) becomes

wk +k Wk w H(1-w -w/u)=0

(B.1)
The boundary conditions that go along with Eq.(B.1) are;
k,=(w"""-1)/w atx=0,L for hinged - hinged beam,
k,=(w’""-1)/w"atx=0,L for clamped - clamped be,am,ﬂ
k,=(w’"-1)/w" atx=0, and
kK, wtk, w-(w’'"+ w*/p - 1) = 0 at x = L for clamped-free beam, (B.2)
and
k,=(w -1)/w atx=0, and

k,=(w-1)/w atx=L for clamped - hinged beam.”
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Appendix C

We note that Eq. (B. 1) is a second order linear differential equation, which could

be written in the form

kta (x)k + a,(x) k, =h (x) (C.1)
There follows,
k= C, (%) u, (¥) + Cy(x) u, (x) (C.2)
Where
0 u,
h U
h(x)yu, (x)
Cl = W [ﬂl (x)’ uz (I) ]
U, U,
u, u,’
and similarly,
BRICTAC
2 W lu (%), u, ()]
Thus we can write
o rOBO
W [u, (x), u, ()]
h :
= @4 &) dx +C, (C.3)

: W [u, (x), u, (¥)]
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Where W [u, (x), u, (x)] is the wronskian of u,, u,.
The introduction of these results into Eq. (C. 2) gives the desired solution.

And will have the form

B@ [y () u, (x) ~u,) (D) u, (x)]1dE
W [, (O).u, (O]

o () vo,un () (C4)

u, (x) and u, (x) are the homogenous solution to differential equation C. 1, where for known

constant values of a,, and a, have the form

—
u (x)=e¢"

-a 1/«12 - 4a
Where B, = — = 2 i=12 (C.5)

= 5 =
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