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The moment method, which has been used in antenna impedance calculations, is applied to calculate
the resistance or capacitance of a cylindrical conductor driven in a two-layer earth. The conventional
point matching moment method (PM-MM) and the Galerkin’s moment method (G-MM) for
resistance calculations are explained. The error reduction property of the G-MM is verified

analytically as well as numerically.
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1. INTRODUCTION

The Galerkin’s moment method is a very powerful
method which requires few segments but sall gives
accurate answers to the integrated results such as
resistance and capacitance in electrostatics. The
reason for this is that it has a built in error reduction
property in the formulation of the matrix elements
of the moment method.

An error reduction technique was actually used

* long time ago by Sunde [1] through averaging the

voltage over a long segment. Sunde did not know,
however, that the formulation has a universal error
reduction property. As a result his formulation has not
made a significant impact. In previous papers [2-7],
we have used this property to analyze the grounding
resistance. and  surface potentials of different
grounding structures.

In this paper, an explanation for the error reduction
property . of the Galerkin’s moment method, a
formulation, a mathematical proof, and a numerical
verification are introduced. The explanation starts
with the formulation of the problem and then points

-out the difference between the PM-MM and the

voltage averaging of G-MM. Followed by a proof of
the error reduction property and ends with numerical
verifications by applying the G-MM to a single
driven rod ina two-layer earth. The moment method
(MM). formulation is summarized from [8]. The
variational (error reduction) aspect of the G-MM is
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summarized from [9].

2. FORMULATION OF THE MOMENT
METHOD

The moment method [8] is a numerical procedure
to solve a general inhomogeneous equation of the
form

g = L) (1

where L is a linear operator, g is a known function
and f is the unknown function to be determined.
This can readily be identified with the integral
equation used for a grounding electrode of surface
area S, that is,

)

&_,
&I'c

where V is the voltage everywhere and is known on
S. V corresponds to the unknown function g of (1),
Jg is the vector current density over the electrode
surface S corresponding to the unknown function f,
and the reset of the expression of (2) is the linear
operator L. where p is the medium resistivity (Q.m).
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For capacitance calculations, the charge density and
the dielectric constant are used instead of Jg and 1/p,
respectively.

In general, the MM defines

f=Y «,f, 3)

where f are a set of N chosen basis functions that,
with proper coefficients a, closely represents f. The
coefficients «, at this point are unknowns.
Substitution (3) into (1) using the linearity of L, we
get

N
g=Y a,L(f) @

n=]

To proceed further with (4), we give two more
definitions. The first is the inner product <f,g>. For
the integration (2), the inner product for the
problem under consideration is identified as:

<f,g>=fﬁ;fgds=f—£—vj;'a§ )
s

The second is a set of N weighing functions W/,
The choice of W, results in different types of MM,
e.g. point matching MM, Galerkin’s MM, etc.
Details of the choice are to be discussed later. With
W_, chosen, we have the following inner product,

N ‘ ‘
<W‘,8> =E ¢l<wn’l‘fl> (6)
n=1
with m = 1 ... N. We can thus form a matrix
equation
(8] =[] [2,] ™
The current on the segment n is given by
1 T AT
L=—7]J -dS
agh ®
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3. PM-MM AND G-MM FOR A SINGLE
DRIVEN ROD IN TWO-LAYER EARTH

Figure (1) shows a driven rod in a homogeneous
earth and its single image divided into N segments.

For two-layer analysis, Figure (2) shows the
multiple images, in this case, for a segment n in the
upper layer with current of I. The field point is
considered in the upper layer. Figure (3) shows the
images and reflections for a source in the lower layer |
and the field point in the lower layer as well. Figure
4 shows the images and reflections for a source in
the lower layer while the field point is in the upper
layer. .
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Figure 1. A single driven rod into a homogenous .
earth and its images divided into N segments.

In these figures we used K to represent the
reflection factor which is defined as

k-£2_ 2t ©
Py * Py

where p, is the resistivity of the upper layer (.m) |
and p, is the resistivity of the lower layer (.m).

The matrix equation (7) of the MM relating the
known [V_] to the unknown current on the
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electrode. The convergence of the solution of the
- matrix equation depends on the choice of the weight
function W . Also the choice of both W, and the
basis function f depends on the geometry of the
electrode to be solved. We used a simple geometry
of a single conductive rod of radius a, length £ in a
homogeneous and two-layer lossy earth of
 resistivities p; and p,, respectively.

We choose step pulse basis function for the
uniform current over the segment af, i.e.

f.=1 on Al

f=0onAl , m=#n (10)

For the usual PM-MM, we choose the weighing
functions;

W, = 8z - z,) (11)

. where z is the mid point of af . This results in
the matrix (7) with I the current considered uniform
over the nth segment and

AV
R== [VI@dz=—2[1, @)z = = (12)
| G I

o |44
R"'zqu,h( 2 J (13)

This usual PM-MM is well known and gives slow
convergence. With G-MM (the weighing functions
are equal to the basis functions), i.e.

W, =f, (14)
This results in
1
Vo=—o V(z) dz (15)
-ac |

Eqn. (15) is the average of the voltage over the
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segment af .

Such averaging reduces the error in the voltage
when compared to the PM-MM. With step pulse
basis functions as well as the weighing functions of
(11), Eqn. (15) leads to
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Figure 2. The source and field points in the upper
layer.

For all m and n including the self term of m = n.
The above R, formula is analytically integrable and
results are discussed in previous papers [2-7].
Eqn.(16) is known as the variational form.

4. PROOF OF THE ERROR REDUCTION
PROPERTY OF THE G-MM

The essence of the error reduction property is in
the averaging of the potential over the whole
segment even if the segment covers the whole
conductor. This is due to the fact that the total
current on the conductor is the same as the exact
one, however, the resulted current distribution on the
conductor differs from the exact one specially at
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both ends of the conductor. Since we are calculating
the conductor resistance and the value of the
resistance depends on the conductor total current
and does not depend on its distribution, the error in
calculating the resistance is very small. This will not
be valid in the case of calculating the surface
potential because it does depend on the current
distribution. We have discussed a novel technique
for satsfying the boundary conditions at the
conductor ends so that the surface potential can be
calculated accurately [7].
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Figure 3. Source and field points in the lower layer.

Such desirable property (i.e. error reduction
property) has been considered in various texts [9].
We shall apply it to the grounding resistance.
Without the approximation of uniform current in the
one segment over the whole conductor, Eqn. (16)
becomes,

RTEI—;[[G(z—z') 1) (z")da’|dz - an

where
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L (18)

Viz -z') + a?

G@z-z)=

and

I-[ 1) &z (19)
[}

If ], is exactly known, Eqn. (17) can be written as
he following two equations

V(z) =£€ [ G(z-zJ (z")dz’ (20)
where V(z) = V_ a constant over the rod £, and
1 ¥ _V,
R== _( v (@)dz=—2 .[J‘(z)dz——-i— (21)

Now assume J, is in error to become ], + 8], there
should be an error R added to R in (17). The
relationship between 6], and SR can be obtained by
applying a differential to both sides of (17)

a[( [ J,(z)dz:)2 R|=

-B-a( [ G(z-z)I (@) 1z’ dz’ldz]
4n '[-( i 22) |

Because of the symmetry of the function G(z-z’), the
above equation becomes

[ fl,(z)dzT6R +2R [1(2)dz (I 2 dz'=
¢ ¢ ¢

2?;[2 [ j.' Gz-zHIz) aJ,dzdz’] (23)
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.:;.th (19) and (21), this gives,

y P
I%3R =2 [ 81V, + -2 [ GJ,(z')dz’}dz (24)

Because of (20) the bracket in the integrand of (24)
is zero and the finite integral of (24) gives

I2 R = 0, ie. 3R=0 (25)

Eqn. (25) showed that for a first order error 8], in
‘the current distribution, the first order error in the
resistance SR of one segment rod is zero. This
means that only the second order error remains.
Numerically it means that for a 20% error in the
 current distribution, the second order error in R was
only 4%.

5. RESULTS AND DISCUSSION

It is clear that, if N, the number of segments, is
large, Eqns. (16), (12), and (13) approach each other
and there is no difference in accuracy of the G-MM
and PM-MM versions. If N is small, without
averaging of (15), the point matching results of
resistance  deteriorate badly and cannot be used.
- With ‘averaging, the G-MM results remain quite
© accurate, with a resistance error less than 3%. This
- mieans that the whole rod can be represented by one
segment. _ ,

Although the exact current distribution on the rod
has ‘singularities (one at each conductor tip for
sunken_depth # O and only one singularity for
sunken depth = 0) while the assumed current
distribution is a uniform step pulse (the whole rod is
taken as one segment), the numerical calculations
showed that resistance error is less than 3%. When
three segments are used over the rod, two small ones
at the two ends and a bigger one in the middle, the
resistance error is less than (3/9)%.

To "demonstrate the error reduction property
presented in this paper, a single rod of radius 0.01m
and length 10 m is buried in two-layer earth with
the upper layer resistivity of 100 Q.m. The resistance
of the rod is calculated for different values of the
sunken depth, the reflection factor, and the height
of the upper layer. The calculations of the rod
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resistance for each set of these parameters are
repeated for two cases : N = 1 and N = 20. Table I
contains the results of such calculations. It is clear
that the maximum percentage difference in the
resistance values between N = 1 and N = 20 is less
than 1% for any set of rod parameters.

o Y (€ £ o) B

T Ny K(1+K)I

SRRSO (S VIR, SO R

NN
\
x 5 1+K)I
| (TR SNy 14+
[ et o N ,\A,, e %
~ ’, N
., w N %
‘ 5 B N Y S
| R o)
7 /
, P ’
A * i xs 2o /
-’ r
1; > ok 7oA 7
’ &
~ .\Y\ﬂ{ , )7
N\ ’ F L r 4 1
AS ANRN v /
e -

K(1+K)I

K°(1+K)I

Figure 4. Source in the lower layer and the field
point in the upper layer.

6. CONCLUSION CONCERNING THE
CALCULATIONS OF THE RESISTANCE -

The Galerkin’s moment method is compared with
the point matching moment method. Applying
PM-MM will achieve a high accuracy in resistance
calculation, however it needs a large computer
resources and is time consuming. This is due to the
large number of segments needed to achieve

; adequate accuracy. Using the G-MM one can take
- the whole rod as one segment'if buried into a

homogencous earth and two segments if buried in
two-layer earth. This makes the computation time

+ short which will help in a preliminary quick design.
' However, calculating the surface potential needs

more than one segment per rod. It was found [7]
that three segments is enough to achieve accurate
values of the surface potential.
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Table I. Resistance calculated for the whole rod as one segment and as 20 equal segments per rod. Rod
length = 10 m, rod radius = 0.01 m, and upper layer resistivity = 100 Q.m.

‘l’g:: Sl;'c'm‘ Number of Segments per Rod
H;LS)“ (m) 1 20 1 20 1 20 1 20 1 20
K=0.9 K=05 K=10.0 K=-05 =-09

Rod Resistance Values ({1)

1.0 |oo0 962 | 9962 |3018 |3085 |1155 |115 |39 |411 |o066 | 066
0.5 11632 | 11572 [ 3054 [3031 | 1135 |1135 |38 [397 |06 |063
0.0 6258 | 6247 | 2677 |27.02 429 |436 |01 |om
20 |os 6829 | 6794 |27.19 | 2745 Same 412 420 |[o069 |069
10 7955 | 7903 |2810 |2845 | 1123 [1124 [398 |406 |066 |066
0.0 2099 | 2997 | 1949 | 1947 541 |s542 |106 | 105
0.5 3.4 | 3107 | 1978 | 1975 Same 515|516 |09 |098
so |10 3291 | 3279 |2032 |2028 494 |49 [o092 |09
T 1 20 3820 [3800 |2178 2174 | 1107 |1110 [45 458 |os1 |o31
25 212 | 4188 | 2269 |2266 | 1100 |1105 |440 [442 |o077 [076
30 4748 | 4727 | 2374 | 2374 |.1095 | 101 425 [427 o073 |073
4.0 6752 | 6696 | 2640 |2648 | 1085 | 1095 |398 |400 |o066 | 066
0.0 1996 | 1996 | 1517 | 1516 741 [738 |204 |202
0.5 2044 | 2042 | 1537 | 1534 6% |687 [175 |17
1.0 2144 | 2110 | 1572 | 1568 o 649 |646 |15 | 153
80 |20 298 | 2201 |1661 | 1655 s34 |s582 125 |14
30 2554 | 2543 | 1773 | 1765 533 | 531 105 | 105
4.0 29.19 | 2904 | 1901 | 192 4a%0 |48 o091 |o9
50 . | 3472 |3451 [2079 2072 |1088 | 1087 |455 |45 |os1 |os1
6.0 4.4 | 4381 | 2295 |2289 | 108 |1083 |424 424 |07 |07
7.0 6425 | 6367 |2582 {2580 | 1080 |108 |[397 |398 |oe |o66
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