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ABSTRACT

A linearised surface wave motion is considered for a fluid of infinite extent and of infinite or finite depth
in the presence of an impermeable plate and a porous wall immersed in the fluid parallel to each other.
The motion is generated by small horizontal oscillations of the impermeable plate or the porous wall
oblique to its plane. The scattering problem of a time-harmonic wave incident obliquely on the porous
plate which is kept fixed is considered also. The effect of porosity and the angle of incident on the

reflection and transmission coefficients are discussed.
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1. INTRODUCTION

The scattering of surface waves obliquely incident on
a partially immersed or completely submerged vertical
barrier and plate in deep water was studied by Faulkner
[1,2], Jarvis and Taylor [3], Evans and Morris [4],
Rhodes-Robinson [5] and Mandel and Goswami [6],
employing different methods. (In these works the
vertical barrier was represented by a vertical
impermeable plate).

Chwang [7] considered a porous wave maker
oscillating normally to its surface with constant
amplitude. In this linearised analysis, the wave maker
is located in the middle of an infinitely long channel
with constant depth.

Chwang and Li [8] applied the linearised porous wave
maker method developed in [7] to investigate the small
amplitude surface waves produced by piston-type
porous wave maker near the end of semi-infinitely long
channel of constant depth. Gorgui and Faltas [9]
considered the wave motion for a fluid of infinite
extent and of infinite or finite constant depth in the
presence of an impermeable plate and a porous wall
immersed in the fluid parallel to each other. The
motion is generated by small horizontal oscillations of
the impermeable plate or porous wall normally to the
surface of the impermeable plate or porous wall.

In the present paper we propose to investigate the
two-dimensional gravity waves. The waves are
generated by arbitrary prescribed horizontal oscillations
oblique to the plane of a porous wall or an
impermeable plate. The boundary condition on the
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surface of the porous plate is derived on the basis of
Taylors assumption [10] that the relative velocity
normal to the porous wall is linearly proportional to the
difference in pressure on the two sides of the wall.

2. OBLIQUE WAVES GENERATED IN SEMI-
INFINITELY LONG-CHANNEL

Assume irrotational motion of fluid with a free
surface. This fluid also is assumed to be an
incompressible and inviscid flow under the action of
gravity; surface tension is neglected. Cartesian axes are
chosen so that y is directed vertically downwards and
x,z are in the plane of the free surface. The wave
motion is induced by an impermeable plate oscillating
horizontally about its mean position at the end of a
semi-infinitely long channel. We assume that the
oscillations of the plate are periodic in time and in z-
direction, let its velocity at time t be V U(y) exp (-iwt
+ ivz) where v=K sin § in which K = /g, B is the
angle that the produced train of waves makes with x-
axis, g is the gravitational constant, U(y) is complex
valued and suitably limited. At a distance d forme that
plate a porous wall is fixed in the fluid parallel to the
plate see Figure (1). The resulting fluid motion is
therefore time and z harmonics with the same w and v
as that of the plate, respectively. The motion is
assumed small so that linearisation is permissible. We
consider first the case when the fluid is of infinite
depth. When the initial transients disappear, the
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subsequent motion can be conveniently described by
velocity potentials

;(xyzt) =Re {¢;(x,y)expt(-iwt +ivz)},j=1,2

refer to the regions 0<x<d,x<0, respectively, and the
functions 9; satisfy

¢m+¢j”—v2¢j=0iny>0 2.1)
subject to the free surface condition
K¢j+¢jy=00ny=0 2.2)
On the impermeable plate we have
$1x=VU(y)onx=d 2.3)
and on the porous wall
P1x =P onx=0 2.4

Y

Figure 1. Schematic diagram of a porous wall parallel
to an impermeable plate.

We shall assume that the porous wall is made of
material with very fine pores. Thus according to
Taylor's assumption [10], we have

i = iG(¢)-¢)onx=0 (2.5)
Where G = pwb/u’ " is the dynamic viscosity, p is the
constant density of the fluid and b is coefficient which
has the dimension of length. It should be noted that if
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the porous flow through the plate is significant, Taylor's
assumption and condition (2.5) may be not accurate
enough.. Hence we should confine our investigation to
porous walls with fine pores.

Finally we have the conditions for no motion at infinite
depth

v, -0 asy-o (2.6)
and the radiation condition for the outgoing waves

¢y > Ce K asx >0, y>0  (27)

Where C is a constant and p = K cosg = yK2-v2.
The relevant physical parameters of the probleim are the
distance d, the wave number K, the angle of incident
waves 3 and the porous effect parameter G.
3. SOLUTION OF THE PROBLEM

Using the method of separation of variables and

superposing basic solutions of Laplace's equation (2.1)
appropriate to the present case, let

¢1= [ [AG) A + B (e fiky) dk

+ (o™ + B* Xy Ky,

3.1

92 = [ CMD flly) dk +9e 5, (32)

where f(k,y) = k cosky - K sinky,

AK) = JKZvE.

Equations (3.1), (3.2) satisfy all the conditions of the
boundary value problem (2.1)-(2.7) except (2.3), (2.4),
(2.5). Conditions (2.4), (2.5) are satisfied if

A-B=Ca-f=-7

iGIC-AB) =M G, Glya-B) =- py
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Solving the above equations to find A and B in terms
of C and «, 8" in terms of y and then substituting in
(2.3) we get

v U) =[c2Bsacna ar -1 age3.3)
0

Where

Ap) = iGe™™ + y sin pd. (3.4)

Multiplying both sides of (3.3) by ¢ and integrating
with respect to y from 0 to o, we get

_ 2xKVGA
HA(R)

whete A« - f Uy)e™ dy.
%%
But U(y) has the unique expansion

_, [ka® X
U(y)= 2 | —=fik,y) dk-2 ¥ .
@ {kuxzf( Mdk2r KA,  (35)

where a (k) = - ?ll-c f U(y) fik,y) dy
)

Which can be easily proved by straight forward
application of the Fourier sine of U(y). Comparing (3.3)
with (3.5) we get

-2ikVGa(k)

C )= ——=—— .
&*+K)A (A K)AK)

Hence

i f ka(Wf(k,y)
2 AR +K?)A GA®K)
- Acosh ( (0 x)1dk

[ie*®x

. ZnVAK[

Ge ¥ ipcospxle ™, (35.1)
rA(W) e
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ka (k) f(k,y)

¢ -_2iV f A(k)xdk
5 AR K2 +KHA (A (K)
- 21‘!’VGKe—iux-KY_ (3.52)
pA(p)
The free surface elevation given by 7; = =2 4,(x.0)
is
Sn,=2iK[ k"a(l) [[Ge*®*
v 0 AR (K2 +K*)A (1K)
- (k) cosh (A (k) x)]dk
~ 2niK2A -ipx
_°ln2=2GKf AL, etk
v o AR (kZ+K?)A (A (K) (362)
2niAGK? .,
-—
pA(W)

These results represent the incident and reflected waves
in the finite region 0 < x <d and the transmitted waves
propagating in the unbounded region x < 0.

The amplitude of the free surface gravity waves given
by (3.6.2) varies with distance from the porous wall
because of the contribution from the non-propagating
wave represented by the integral term. As Ix1 —co this

contribution tends to zero as 1 and the wave
X

amplitude approaches to the constant quantity
2nGK?| AV
L |
of G this amplitude decreases as K increases. On the
other hand for any given value of K this- amplltude
increases monotonically from 0to 2 7 |A V IK u as
G increases from 0 to oo.
When the porous wall ‘is completely permeable
(G—), the velocity potential in the region x <d is

. It is evident that for any given values

-2V fka(k)f(k )Y) A& gy

o 2 &?+K?)
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_2miVAKe ™
B

o Ik, (3.7)

This results represent the waves generated by the
oblique oscillations of a wave maker in the unbounded
region x < d.

For an impermeable wall (G=0), the results (3.5.1),
(3.5.2) reduce to

o =_2V] ka(f(k,y) cosh(d(®)x) g
: 5 A (k) (k2 +K?) sinh(A(k)d)

21: VAK cospx ey
B smp.d

¢, =0

This solution is valid only when ud # s, where is an
integer. However it indicates that when ud=sm,
resonance occurs and the linearised theory for small
motion cannot be applied.

(3.8.1)

(3.8.2)

In the particular case when U(y) = e we have

&= u;‘(’u)(che"'*"+ucosux)e"‘y,, (3.9.1)

_-VG_
uA(u)

4. THE FINITE DEPTH CASE

¢, = o Y, (392)

Now we consider the case of finite depth h. Using the
same notation and coordinates, the complex potentials
¢;J = 1,2 for h motion in the fluid regions 0 < x <d
and x < 0 are the solutions of the boundary value
problem stated in section 2 with conditions (2.6), (2.7)
replaced by

4.1)

4.2)

¢jy=00ny-h,

¢, = G cosh k,, (h-y) e#* as x = - oo,

where p = \/kf -v? and k_ is the real positive root of
k sinh kh - K cosh h =0.
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The method of separation of variables can be also used
to get solutions for equations (2.1) that satisfy (2.2)
(4.1) and (2.2), (4.1), (4.2). Let

b,=Y (A" +B e "")cosk, (h-y)
n=1

+(aei?*+p*e*)coshk, (h-y)

4.4)

b=y (C,e"" cosk, (h-y) “5)

n=1

+ye'**coshk, (b -y)

where p, =‘/k3 +v? and k, are the real positive roots of
k sinkh + K cos kh =0.

The remaining conditions are satisfied if

VU(y~—(—}-E 1,C,A G p)cosk,(h-y) - EX A(uo)

Since the eigenfunctions cosh k, (h-y) and cos k, (h-y)
are orthogonal over the interval [0,h], we obtain the
constants as

_ -4mVGa k,cosk.h

_4nGk,a coshk h
T S AGH)

pd,A(K)

where 6= 2 k, h +sinh 2 k h, §, =2 k, h + sin 2k, h,

f U(y) coshik, (h-y)dy,

a S ere———
¥ ncoshkh

Eyrees fove 2
& = msknh{U(”mk“(h ydy.,

——41:VE e St [lGe"“x
as1 K 0,A(K)
- p,cosh p.nx}coskn(h y)

4nVa k coshk h
T 2 S NG 145 + pcos pxJcosh s (B -y), (4.6.1)
p3,A (k)
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kna cosknh
¢,=-4niVG -y)
.2-:1 u,,b..A(wu) ey
k,coshk h
4x VG5 hx on y (a-y), 462
+ VYS! p-y) (46.2)
ForG=10
_ k,a,cosk h cosh p,x
-4n v§ T d,oslg,(h y) (471
k coshk h
v4n v 2o SO BXcosk, (h-y) 4.12)
p,8, sinpd
¢2 = 09

provided that ud #s =, s is an integer.

As a particular case, when U(y) = cosh k (h-y)

VG
RA(R)

é,=- (Ge "** + pcospx)coshk (b -y),

VG
KA (W)

$,=- e *Xcoshk (h-y).

5. OBLIQUE WAVES GENERATED BY THE
POROUS WALL

If we let the impermeable at x=d be kept fixed while,
we let the porous wall oscillate horizontal about its
mean position with velocity V U(y) exp (-iwt+ivz), then
the new boundary value problem is the same as stated
in section 2 for the infinite depth case or as a stated in
section 4 for the finite depth case, except that the
boundary conditions (2.3), (2.5) are replaced by

$1x =0onx=d, 5.1)
¢jx -VUy) =1G(¢p-¢))onx=0. (52)

Thus

2vf ka(f(k,y)  ocha(d-x)dk
o (KZ+K2)A(iA)
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_2n VKA

cosp(d-y)e ™™, (35.1)
Ap
b Ax
b= -2v [Ra@IETe " g4 g
o K2+K2)A @A)
27 VEA npdeirs &y 352)

for the infinite depth case; and

=4x VE Katy COSk"hcosun(d -x)cos k (h-y)

n=1 6A( “)

_4nVka coshkuh

k a sinhp dcosk d o P
b,=-4nV Y
- nzﬂ 5nA(1pn) COSkn(h y)
B 4nik03‘,68il;b:i;mhkoh e'**coshk (h-y) 542)

for the finite depth case.

6- OBLIQUE WAVES GENERATED IN INFINITELY
LONG CHANNEL

Her we consider a wave motion induced by a porous
plate situated at the middle of an infinitely long
channel. With the same notation as before, the complex
potentials ¢, j=1,2, for the motion in the fluid regions
x > 0 and x < 0, are the solutions of the boundary
value problem with conditions (2.1), (2.2), (2.4) (2.6)
and

bix - VUy) =iG(¢-¢)onx=0, (6.1)
$;==CectwK asx >t . (62)
Applying the same technique as before we get
¢=

£2V fka(k)e O, g

t ZﬂiVAKe*m-xy (6.3)
o (k2 +K?)[A-2iG]

p+2G
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For an impermeable wall (G=0), we get in x > 0

Ky (6.4)

= 2V}ka(k)e Ofk,y) , 27iVAK i
o (K2+KH)A B

and for normal incident (8=0), ¢ reduces to

¢ =

tzv] ka()e **f(k, )

+ 2niVAK=tin—Ky (65)
s (k2 +K2)(k-2iG)

k+2G

The hydrodynamic pressure distribution on the porous
plate surface is

AT 2ka@®f(k,y)
=-2
g ’pmv{{ (k2 +K?)(A-2iG)

In the particular when U(y) = ¢XY, we have

-K;
dk+ 2":}2"’(} ’]a". (6.6)

: -Ky +ipx
¢ = ;———'V:+ZG ©6.7)

For this particular case, the total average force on the

part of the porous plate y > o, —gsvzs—ghas an

amplitude
Fj 26y 4 (63)
K =n(p+2G)
3
The dimensionless force amplitude | 3435 | is shown
4wpV

in Figure (2) as a function of the parameter G/L for
values of /K = 0.0.8, 1. It can be seen that for all
values of v(0<v/K <1), the force amplitude has its
greatest value when the plate is impermeable and
decreases as G/K increases indefinitely and when the
plate becomes completely transparent to the fluid
(G/K—>), the force reduces to zero as it should be
based on physical tuition. In Figure (3) the force
3

amplitude, | X7F

4dwpv
values of G/K = 0,1, o. It can be seen that the force
amplitude increases as v/K increases.

| also is plotted versus v/K for
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ke r/upmy]

» /K=0
M /K=0,8
V/K =1.0

2.0

¢ 7 I e 1o TR T 1 A K
Figure 2. The force amplitude on the porous plate
versus G/K for different values of v/K in the case of

infinity channel.

162wk /4uapv |

G/t=ve ¥ : :
0 o:| 'o:a o.l} o:~ 0.5 0.6 0.7 0.8 0.9 1.0
Figure 3. The force amplitude on the porous plate
versus v/K for values of G/K=0, 1 and o in the case of
infinity channel.

¥/

As an interesting application of this section, let a time
harmonic wave CV ¢**KY incident obliquely from
infinity to the porous plate which is kept fixed. The
velocity potentials ¥ satisfy (2.1), (2.2), (2.5) and

¢jx=¢21

. onx=0. (6.10)
=1G(¢2 _‘t’])}

Moreover

¢, = (A; ¥ + CV ¢#) ¢XY a5 x » ,(6.11)
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¢, =Ay e K ggx > - o0 (6.12)
Here A}, A, (to be determined) are complex constants
relating to the amplitude and phase of the reflected and
transmitted waves, respectively. To solve this problem,
let

'1’j=<|>j-vc.=,"‘y o (6.13)

These new functions satisfy equation (2.1) and have
vanishing gradients as y — oo.
on the porous plate ¥, =¥, (6.14)

=iG ‘1’2-'Pl+iVCp,e'K’ (6.15)
Therefore ‘l’j are the solutions of the boundary value

problem treated above in this section with U(y)
replaced by iC p,eKY, Hence

b, =————FY§Ge"‘Y*i“ +YCeXries, - (6.16)
4y = 20CY ¢ Kysinz (6.17)

p+2G

Since the wave energy is proportional to the
amplitude square, we define the reflection and
transmission coefficients R and T as the square of the
ratio of the amplitudes of the reflected and transmitted
waves to the amplitude of the incident wave
respectively.

Therefore
R = _w ,T=__4_G_.2_ (6.18)
(p +2G)2 m -4-2(})2
2 2
ol R+T _”_14% (6.19)
(1 +2G)

We should note here that for normal incidence results
(6.18), (6.19) reduced to the corresponding results of
Chwag and Dong [11]. The coefficients of reflection R,
coefficient of transmission T and the sum R + T are
plotted in Figure (4) versus G/K for values v/K =10,08
and 1. We noted from this figure or by simple
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differentiation of (6.19) the sum R + T reduces to a
fixed minimum 0.5 irrespective of the value of v/K.

w/X=0
0.4} A apm— Y | {3 3

—ttasan ¥/ K20 .8

: < c/X
0.0 = - 2
1.0 2.0 3.0 4.0 5.0

Figure 4. The coefficient of reflection R and the
coefficient of transmission T versus G/K for different
values of v/K.

T(G/K=w=)

\I (6/x=0)

n.s} R+T(G/K=1)

R(G/X=1)

1{C/K=0) /ﬂ(ﬂ/l(:-)

g L el o

b i "
0.3 0.a 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.2

Figure 5. The coefficient of reflection R and the
coefficient of transmission T versus G/K for different
values of v/K.

In Figure (5), R, T and R+T are plotted versus v/K
for values G/K = 0,1, oo.

We note at G = 0, the plate becomes impermeable, all
indent wave energy will be reflected for all values of
incident angles (. On the other hand as G - o all
incident wave energy will be transmitted (T=1,R=0)
again for all values of (3.

For G/K = 1 we see R decreases and T increases as vK
increases.
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